These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19576617)

  • 1. Development of river biofilms on artificial substrates and their potential for biomonitoring water quality.
    Tien CJ; Wu WH; Chuang TL; Chen CS
    Chemosphere; 2009 Aug; 76(9):1288-95. PubMed ID: 19576617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary).
    Kröpfl K; Vladár P; Szabó K; Acs E; Borsodi AK; Szikora S; Caroli S; Záray G
    Environ Pollut; 2006 Nov; 144(2):626-31. PubMed ID: 16542765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pioneering bacterial and algal communities and potential extracellular enzyme activities of stream biofilms.
    Pohlon E; Marxsen J; Küsel K
    FEMS Microbiol Ecol; 2010 Mar; 71(3):364-73. PubMed ID: 20015334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the disturbance caused by an industrial discharge using field transfer of epipelic biofilm.
    Victoria SM; Gómez N
    Sci Total Environ; 2010 Jun; 408(13):2696-705. PubMed ID: 20385404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some aspects of water quality in a polluted lowland river in relation to the intracellular chemical levels in planktonic and epilithic diatoms.
    Tien CJ
    Water Res; 2004 Apr; 38(7):1779-90. PubMed ID: 15026232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faecal indicator bacteria in river biofilms.
    Balzer M; Witt N; Flemming HC; Wingender J
    Water Sci Technol; 2010; 61(5):1105-11. PubMed ID: 20220231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of metal accumulation by natural river biofilms during their growth and seasonal succession.
    Tien CJ; Chen CS
    Arch Environ Contam Toxicol; 2013 May; 64(4):605-16. PubMed ID: 23247559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nutrients, hexadecane, and temporal variations on nitrification and exopolysaccharide composition of river biofilms.
    Chénier MR; Beaumier D; Roy R; Driscoll BT; Lawrence JR; Greer CW
    Can J Microbiol; 2006 Aug; 52(8):786-97. PubMed ID: 16917538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of chronically contaminated biofilms to short pulses of diuron. An experimental study simulating flooding events in a small river.
    Tlili A; Dorigo U; Montuelle B; Margoum C; Carluer N; Gouy V; Bouchez A; Bérard A
    Aquat Toxicol; 2008 May; 87(4):252-63. PubMed ID: 18387680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of dissolved organic matter and inorganic nutrients on the biofilm bacterial community on artificial substrates in a northeastern Ohio, USA, stream.
    Olapade OA; Leff LG
    Can J Microbiol; 2006 Jun; 52(6):540-9. PubMed ID: 16788722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition.
    Lawrence JR; Scharf B; Packroff G; Neu TR
    Microb Ecol; 2002 Oct; 44(3):199-207. PubMed ID: 12154388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple system for biofilm potential monitoring in drinking water.
    Delahaye E; Levi Y; Leblon G; Montiel A
    J Basic Microbiol; 2006; 46(1):22-7. PubMed ID: 16463314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system.
    Batté M; Koudjonou B; Laurent P; Mathieu L; Coallier J; Prévost M
    Water Res; 2003 Mar; 37(6):1351-61. PubMed ID: 12598197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial heterogeneity of periphytic microbial communities in a small pesticide-polluted river.
    Dorigo U; Lefranc M; Leboulanger C; Montuelle B; Humbert JF
    FEMS Microbiol Ecol; 2009 Mar; 67(3):491-501. PubMed ID: 19161431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects.
    Diaz Villanueva V; Font J; Schwartz T; Romani AM
    Biofouling; 2011 Jan; 27(1):59-71. PubMed ID: 21113861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities.
    Lawrence JR; Zhu B; Swerhone GD; Roy J; Wassenaar LI; Topp E; Korber DR
    Sci Total Environ; 2009 May; 407(10):3307-16. PubMed ID: 19275956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of biological oxygen demand degradation patterns on water-quality modeling for rivers running through urban areas.
    Fan C; Wang WS
    Ann N Y Acad Sci; 2008 Oct; 1140():78-85. PubMed ID: 18991906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial indicators in natural biofilms developed in the riverbed.
    Hirotani H; Yoshino M
    Water Sci Technol; 2010; 62(5):1149-53. PubMed ID: 20818058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity.
    Bonnineau C; Guasch H; Proia L; Ricart M; Geiszinger A; Romaní AM; Sabater S
    Aquat Toxicol; 2010 Feb; 96(3):225-33. PubMed ID: 19945176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal patterns of periphyton chlorophyll a related to pulp and paper mill discharges in four US receiving streams.
    Flinders CA; Minshall GW; Hall TJ; Rodgers JH
    Integr Environ Assess Manag; 2009 Apr; 5(2):259-69. PubMed ID: 19132809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.