BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19576699)

  • 1. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction--clinical implications.
    McCarty MF; Barroso-Aranda J; Contreras F
    Med Hypotheses; 2010 Mar; 74(3):596-600. PubMed ID: 19576699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells.
    Elumalai S; Karunakaran U; Lee IK; Moon JS; Won KC
    Redox Biol; 2017 Apr; 11():126-134. PubMed ID: 27912197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L- threo -C6-pyridinium-ceramide bromide, a novel cationic ceramide, induces NADPH oxidase activation, mitochondrial dysfunction and loss in cell viability in INS 832/13 β-cells.
    Syed I; Szulc ZM; Ogretmen B; Kowluru A
    Cell Physiol Biochem; 2012; 30(4):1051-8. PubMed ID: 23052231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of apocynin-sensitive NADPH oxidase (Nox2) activity in INS-1 832/13 cells under glucotoxic conditions.
    Mohammed AM; Kowluru A
    Islets; 2013; 5(3):129-31. PubMed ID: 23695780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress.
    Vilas-Boas EA; Almeida DC; Roma LP; Ortis F; Carpinelli AR
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Insights Into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes.
    Lytrivi M; Castell AL; Poitout V; Cnop M
    J Mol Biol; 2020 Mar; 432(5):1514-1534. PubMed ID: 31628942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pharmacological inhibition of NADPH oxidase or iNOS on pro-inflammatory cytokine, palmitic acid or H2O2-induced mouse islet or clonal pancreatic β-cell dysfunction.
    Michalska M; Wolf G; Walther R; Newsholme P
    Biosci Rep; 2010 Dec; 30(6):445-53. PubMed ID: 20178457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-cell mitochondrial carriers and the diabetogenic stress response.
    Brun T; Maechler P
    Biochim Biophys Acta; 2016 Oct; 1863(10):2540-9. PubMed ID: 26979549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin II Type 1 receptor antagonism mediates uncoupling protein 2-driven oxidative stress and ameliorates pancreatic islet beta-cell function in young Type 2 diabetic mice.
    Chu KY; Leung PS
    Antioxid Redox Signal; 2007 Jul; 9(7):869-78. PubMed ID: 17508912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of NADPH oxidase-mediated redox signaling in the detrimental effect of CRP on pancreatic insulin secretion.
    Chan PC; Wang YC; Chen YL; Hsu WN; Tian YF; Hsieh PS
    Free Radic Biol Med; 2017 Nov; 112():200-211. PubMed ID: 28778482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintaining Effective Beta Cell Function in the Face of Metabolic Syndrome-Associated Glucolipotoxicity-Nutraceutical Options.
    McCarty MF; DiNicolantonio JJ
    Healthcare (Basel); 2021 Dec; 10(1):. PubMed ID: 35052168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Arginine supplementation improves insulin sensitivity and beta cell function in the offspring of diabetic rats through AKT and PDX-1 activation.
    Carvalho DS; Diniz MM; Haidar AA; Cavanal MF; da Silva Alves E; Carpinelli AR; Gil FZ; Hirata AE
    Eur J Pharmacol; 2016 Nov; 791():780-787. PubMed ID: 27717730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion.
    Ward MG; Li G; Barbosa-Lorenzi VC; Hao M
    Sci Rep; 2017 Aug; 7(1):9536. PubMed ID: 28842702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary restriction preserves the mass and function of pancreatic β cells via cell kinetic regulation and suppression of oxidative/ER stress in diabetic mice.
    Kanda Y; Hashiramoto M; Shimoda M; Hamamoto S; Tawaramoto K; Kimura T; Hirukawa H; Nakashima K; Kaku K
    J Nutr Biochem; 2015 Mar; 26(3):219-26. PubMed ID: 25488546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High fat diet modulation of glucose sensing in the beta-cell.
    Cerf ME
    Med Sci Monit; 2007 Jan; 13(1):RA12-7. PubMed ID: 17179917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells.
    Morgan D; Rebelato E; Abdulkader F; Graciano MF; Oliveira-Emilio HR; Hirata AE; Rocha MS; Bordin S; Curi R; Carpinelli AR
    Endocrinology; 2009 May; 150(5):2197-201. PubMed ID: 19147679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hyperglycemia on angiotensin II receptor type 1 expression and insulin secretion in an INS-1E pancreatic beta-cell line.
    Leung KK; Leung PS
    JOP; 2008 May; 9(3):290-9. PubMed ID: 18469441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes.
    Hasnain SZ; Prins JB; McGuckin MA
    J Mol Endocrinol; 2016 Feb; 56(2):R33-54. PubMed ID: 26576641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis.
    Xiong X; Sun X; Wang Q; Qian X; Zhang Y; Pan X; Dong XC
    J Endocrinol; 2016 Nov; 231(2):159-165. PubMed ID: 27601447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH Oxidase (NOX) Targeting in Diabetes: A Special Emphasis on Pancreatic β-Cell Dysfunction.
    Elumalai S; Karunakaran U; Moon JS; Won KC
    Cells; 2021 Jun; 10(7):. PubMed ID: 34206537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.