These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 19577360)
1. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. Ben Sasson M; Calmano W; Adin A J Hazard Mater; 2009 Nov; 171(1-3):704-9. PubMed ID: 19577360 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Lakshmanan D; Clifford DA; Samanta G Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of virus control during iron electrocoagulation--microfiltration of surface water. Tanneru CT; Chellam S Water Res; 2012 May; 46(7):2111-20. PubMed ID: 22326196 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical treatment of the effluent of a fine chemical manufacturing plant. Cañizares P; Paz R; Lobato J; Sáez C; Rodrigo MA J Hazard Mater; 2006 Nov; 138(1):173-81. PubMed ID: 16806682 [TBL] [Abstract][Full Text] [Related]
5. A new approach to increasing the efficiency of low-pH Fe-electrocoagulation applications. Gendel Y; Lahav O J Hazard Mater; 2010 Nov; 183(1-3):596-601. PubMed ID: 20800348 [TBL] [Abstract][Full Text] [Related]
6. Design of a neutral electro-Fenton system with Fe@Fe(2)O(3)/ACF composite cathode for wastewater treatment. Li J; Ai Z; Zhang L J Hazard Mater; 2009 May; 164(1):18-25. PubMed ID: 18768254 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical removal of indium ions from aqueous solution using iron electrodes. Chou WL; Huang YH J Hazard Mater; 2009 Dec; 172(1):46-53. PubMed ID: 19625124 [TBL] [Abstract][Full Text] [Related]
8. Treatment of non-biodegradable wastewater by electro-Fenton method. Chang PH; Huang YH; Hsueh CL; Lu MC; Huang GH Water Sci Technol; 2004; 49(4):213-8. PubMed ID: 15077974 [TBL] [Abstract][Full Text] [Related]
9. Chemical reactions between arsenic and zero-valent iron in water. Bang S; Johnson MD; Korfiatis GP; Meng X Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach. Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159 [TBL] [Abstract][Full Text] [Related]
11. Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode. Piya-areetham P; Shenchunthichai K; Hunsom M Water Res; 2006 Aug; 40(15):2857-64. PubMed ID: 16843518 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process. Ting WP; Lu MC; Huang YH J Hazard Mater; 2009 Jan; 161(2-3):1484-90. PubMed ID: 18554787 [TBL] [Abstract][Full Text] [Related]
13. Optimization of Fenton's oxidation of chemical laboratory wastewaters using the response surface methodology. Benatti CT; Tavares CR; Guedes TA J Environ Manage; 2006 Jul; 80(1):66-74. PubMed ID: 16377070 [TBL] [Abstract][Full Text] [Related]
14. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. Arroyo MG; Pérez-Herranz V; Montañés MT; García-Antón J; Guiñón JL J Hazard Mater; 2009 Sep; 169(1-3):1127-33. PubMed ID: 19464794 [TBL] [Abstract][Full Text] [Related]
15. Degradation of 2,4,5-trichlorophenoxyacetic acid by a novel Electro-Fe(II)/Oxone process using iron sheet as the sacrificial anode. Wang YR; Chu W Water Res; 2011 Jul; 45(13):3883-9. PubMed ID: 21550624 [TBL] [Abstract][Full Text] [Related]
16. Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network. Aber S; Amani-Ghadim AR; Mirzajani V J Hazard Mater; 2009 Nov; 171(1-3):484-90. PubMed ID: 19589640 [TBL] [Abstract][Full Text] [Related]
17. Removal of Fe(II) from tap water by electrocoagulation technique. Ghosh D; Solanki H; Purkait MK J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128 [TBL] [Abstract][Full Text] [Related]
18. Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations. Golder AK; Samanta AN; Ray S J Hazard Mater; 2007 Mar; 141(3):653-61. PubMed ID: 16938395 [TBL] [Abstract][Full Text] [Related]
19. Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water. Vasudevan S; Lakshmi J Water Sci Technol; 2012; 65(2):353-60. PubMed ID: 22233915 [TBL] [Abstract][Full Text] [Related]
20. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions. Kiliç MG; Hoşten C; Demirci S J Hazard Mater; 2009 Nov; 171(1-3):247-52. PubMed ID: 19576688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]