These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19577462)

  • 21. Optimizing the operation of a two-phase anaerobic digestion system digesting grass silage.
    Nizami AS; Murphy JD
    Environ Sci Technol; 2011 Sep; 45(17):7561-9. PubMed ID: 21786758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term (1,243 days), low-temperature (4-15 degrees C), anaerobic biotreatment of acidified wastewaters: bioprocess performance and physiological characteristics.
    McKeown RM; Scully C; Mahony T; Collins G; O'Flaherty V
    Water Res; 2009 Apr; 43(6):1611-20. PubMed ID: 19217137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigations and mathematical simulation on decentralized anaerobic treatment of agricultural substrate from livestock farming.
    Wichern M; Lübken M; Horn H; Schlattmann M; Gronauer A
    Water Sci Technol; 2008; 58(1):67-72. PubMed ID: 18653938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of nitrogen-rich substrates on biogas production and on the methanogenic community under mesophilic and thermophilic conditions.
    Munk B; Guebitz GM; Lebuhn M
    Anaerobe; 2017 Aug; 46():146-154. PubMed ID: 28254264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.
    Rincón B; Borja R; Martín MA; Martín A
    Waste Manag; 2009 Sep; 29(9):2566-73. PubMed ID: 19450962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biogas production from mono-digestion of maize silage-long-term process stability and requirements.
    Lebuhn M; Liu F; Heuwinkel H; Gronauer A
    Water Sci Technol; 2008; 58(8):1645-51. PubMed ID: 19001720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial community structure in anaerobic co-digestion of grass silage and cow manure in a laboratory continuously stirred tank reactor.
    Wang H; Tolvanen K; Lehtomäki A; Puhakka J; Rintala J
    Biodegradation; 2010 Feb; 21(1):135-46. PubMed ID: 19642000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidation mechanism of organic acids production from organic matter (grass) using digested and partially digested cattle feed.
    Sonakya V; Raizada N; Dalhoff R; Wilderer PA
    Water Sci Technol; 2003; 48(8):255-9. PubMed ID: 14682594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of modeling to aid design of a two-phase grass digestion system.
    Thamsiriroj T; Nizami AS; Murphy JD
    Bioresour Technol; 2012 Apr; 110():379-89. PubMed ID: 22342589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture.
    Abouelenien F; Nakashimada Y; Nishio N
    J Biosci Bioeng; 2009 Mar; 107(3):293-5. PubMed ID: 19269595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic monodigestion of poultry manure: determination of operational parameters for CSTR.
    Chamy R; León C; Vivanco E; Poirrier P; Ramos C
    Water Sci Technol; 2012; 65(1):53-9. PubMed ID: 22173408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel upflow anaerobic solid-state (UASS) reactor.
    Mumme J; Linke B; Tölle R
    Bioresour Technol; 2010 Jan; 101(2):592-9. PubMed ID: 19748268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage.
    Pobeheim H; Munk B; Lindorfer H; Guebitz GM
    Water Res; 2011 Jan; 45(2):781-7. PubMed ID: 20875911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.
    Wall DM; Allen E; Straccialini B; O'Kiely P; Murphy JD
    Bioresour Technol; 2014 Nov; 172():349-355. PubMed ID: 25280042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methane production using whole and screened dairy manure in conventional and fixed-film reactors.
    Liao PH; Lo KV
    Biotechnol Bioeng; 1985 Mar; 27(3):266-72. PubMed ID: 18553668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of trace elements on methane formation from a synthetic model substrate for maize silage.
    Pobeheim H; Munk B; Johansson J; Guebitz GM
    Bioresour Technol; 2010 Jan; 101(2):836-9. PubMed ID: 19765984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of on-demand biogas production by using sugar beet silage.
    Ahmed S; Kazda M
    Anaerobe; 2017 Aug; 46():114-121. PubMed ID: 28465255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of solid and liquid retention times on hydrolysis of maize.
    Heaven S; Banks CJ; Cornell M
    Water Sci Technol; 2008; 58(7):1371-8. PubMed ID: 18957749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage.
    Nges IA; Björn A; Björnsson L
    Bioresour Technol; 2012 Aug; 118():445-54. PubMed ID: 22717562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.