BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 19577599)

  • 1. CPP-protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway.
    Räägel H; Säälik P; Hansen M; Langel U; Pooga M
    J Control Release; 2009 Oct; 139(2):108-17. PubMed ID: 19577599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of protein transduction pathways with fluorescent microscopy.
    Räägel H; Säälik P; Langel U; Pooga M
    Methods Mol Biol; 2011; 683():165-79. PubMed ID: 21053129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell transduction pathways of transportans.
    Padari K; Säälik P; Hansen M; Koppel K; Raid R; Langel U; Pooga M
    Bioconjug Chem; 2005; 16(6):1399-410. PubMed ID: 16287236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1-4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface.
    Castle A; Castle D
    J Cell Sci; 2005 Aug; 118(Pt 16):3769-80. PubMed ID: 16105885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial segregation of degradation- and recycling-trafficking pathways in COS-1 cells.
    Misaki R; Nakagawa T; Fukuda M; Taniguchi N; Taguchi T
    Biochem Biophys Res Commun; 2007 Aug; 360(3):580-5. PubMed ID: 17606221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells.
    Youngblood DS; Hatlevig SA; Hassinger JN; Iversen PL; Moulton HM
    Bioconjug Chem; 2007; 18(1):50-60. PubMed ID: 17226957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells.
    Ma DX; Shi NQ; Qi XR
    Int J Pharm; 2011 Oct; 419(1-2):200-8. PubMed ID: 21843610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery.
    Massodi I; Bidwell GL; Raucher D
    J Control Release; 2005 Nov; 108(2-3):396-408. PubMed ID: 16157413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein delivery with transportans is mediated by caveolae rather than flotillin-dependent pathways.
    Säälik P; Padari K; Niinep A; Lorents A; Hansen M; Jokitalo E; Langel U; Pooga M
    Bioconjug Chem; 2009 May; 20(5):877-87. PubMed ID: 19348413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides.
    Fischer R; Fotin-Mleczek M; Hufnagel H; Brock R
    Chembiochem; 2005 Dec; 6(12):2126-42. PubMed ID: 16254940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides.
    Nakase I; Akita H; Kogure K; Gräslund A; Langel U; Harashima H; Futaki S
    Acc Chem Res; 2012 Jul; 45(7):1132-9. PubMed ID: 22208383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct uptake routes of cell-penetrating peptide conjugates.
    Lundin P; Johansson H; Guterstam P; Holm T; Hansen M; Langel U; EL Andaloussi S
    Bioconjug Chem; 2008 Dec; 19(12):2535-42. PubMed ID: 19012426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the cellular trafficking of splice redirecting oligonucleotides complexed with chemically modified cell-penetrating peptides.
    Hassane FS; Abes R; El Andaloussi S; Lehto T; Sillard R; Langel U; Lebleu B
    J Control Release; 2011 Jul; 153(2):163-72. PubMed ID: 21536086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors.
    Douglas KL; Piccirillo CA; Tabrizian M
    Eur J Pharm Biopharm; 2008 Mar; 68(3):676-87. PubMed ID: 17945472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of splice correction by cell-penetrating peptide nucleic acids.
    El-Andaloussi S; Johansson HJ; Lundberg P; Langel U
    J Gene Med; 2006 Oct; 8(10):1262-73. PubMed ID: 16900561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cellular uptake using 22 CPPs in 4 different cell lines.
    Mueller J; Kretzschmar I; Volkmer R; Boisguerin P
    Bioconjug Chem; 2008 Dec; 19(12):2363-74. PubMed ID: 19053306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the entry of two novel cell-penetrating peptides in HeLa cells: lipid raft-mediated endocytosis and endosomal escape.
    Foerg C; Ziegler U; Fernandez-Carneado J; Giralt E; Rennert R; Beck-Sickinger AG; Merkle HP
    Biochemistry; 2005 Jan; 44(1):72-81. PubMed ID: 15628847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic.
    Pelkmans L; Bürli T; Zerial M; Helenius A
    Cell; 2004 Sep; 118(6):767-80. PubMed ID: 15369675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gateways and tools for drug delivery: endocytic pathways and the cellular dynamics of cell penetrating peptides.
    Jones AT
    Int J Pharm; 2008 Apr; 354(1-2):34-8. PubMed ID: 18068916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in the use of cell-penetrating peptides for medical and biological applications.
    Fonseca SB; Pereira MP; Kelley SO
    Adv Drug Deliv Rev; 2009 Sep; 61(11):953-64. PubMed ID: 19538995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.