BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 19577800)

  • 1. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides.
    Chuang TW; Masters KS
    Biomaterials; 2009 Oct; 30(29):5341-51. PubMed ID: 19577800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential support of cell adhesion and growth by copolymers of polyurethane with hyaluronic acid.
    Ruiz A; Flanagan CE; Masters KS
    J Biomed Mater Res A; 2013 Oct; 101(10):2870-82. PubMed ID: 23505036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The haemocompatibility of polyurethane-hyaluronic acid copolymers.
    Xu F; Nacker JC; Crone WC; Masters KS
    Biomaterials; 2008 Jan; 29(2):150-60. PubMed ID: 17936354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo.
    Stachelek SJ; Alferiev I; Connolly JM; Sacks M; Hebbel RP; Bianco R; Levy RJ
    Ann Thorac Surg; 2006 Jan; 81(1):47-55. PubMed ID: 16368333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an RNA isolation procedure for the characterisation of human endothelial cell interactions with polyurethane cardiovascular bypass grafts.
    Vara DS; Punshon G; Sales KM; Salacinski HJ; Dijk S; Brown RA; Hamilton G; Seifalian AM
    Biomaterials; 2005 Jun; 26(18):3987-93. PubMed ID: 15626446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial cell attachment to the gamma irradiated small diameter polyurethane vascular grafts.
    Hsu SH; Chuang SC; Chen CH; Chen DC
    Biomed Mater Eng; 2006; 16(6):397-404. PubMed ID: 17119278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials.
    Masters KS; Shah DN; Walker G; Leinwand LA; Anseth KS
    J Biomed Mater Res A; 2004 Oct; 71(1):172-80. PubMed ID: 15368267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells.
    Masters KS; Shah DN; Leinwand LA; Anseth KS
    Biomaterials; 2005 May; 26(15):2517-25. PubMed ID: 15585254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds.
    Liu H; Li X; Niu X; Zhou G; Li P; Fan Y
    Biomacromolecules; 2011 Aug; 12(8):2914-24. PubMed ID: 21714569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs.
    Arrigoni C; Camozzi D; Imberti B; Mantero S; Remuzzi A
    Biomaterials; 2006 Feb; 27(4):623-30. PubMed ID: 16048730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials.
    Ruiz A; Rathnam KR; Masters KS
    J Mater Sci Mater Med; 2014 Feb; 25(2):487-98. PubMed ID: 24276670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A surface-tethered model to assess size-specific effects of hyaluronan (HA) on endothelial cells.
    Ibrahim S; Joddar B; Craps M; Ramamurthi A
    Biomaterials; 2007 Feb; 28(5):825-35. PubMed ID: 17045332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment size- and dose-specific effects of hyaluronan on matrix synthesis by vascular smooth muscle cells.
    Joddar B; Ramamurthi A
    Biomaterials; 2006 May; 27(15):2994-3004. PubMed ID: 16457881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations.
    Jung IK; Bae JW; Choi WS; Choi JH; Park KD
    J Biomater Sci Polym Ed; 2009; 20(10):1473-82. PubMed ID: 19622283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropatterning of three-dimensional electrospun polyurethane vascular grafts.
    Uttayarat P; Perets A; Li M; Pimton P; Stachelek SJ; Alferiev I; Composto RJ; Levy RJ; Lelkes PI
    Acta Biomater; 2010 Nov; 6(11):4229-37. PubMed ID: 20601235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible, hyaluronic acid modified silicone elastomers.
    Alauzun JG; Young S; D'Souza R; Liu L; Brook MA; Sheardown HD
    Biomaterials; 2010 May; 31(13):3471-8. PubMed ID: 20138660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K
    Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy.
    Lai JY; Lu PL; Chen KH; Tabata Y; Hsiue GH
    Biomacromolecules; 2006 Jun; 7(6):1836-44. PubMed ID: 16768405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.