These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19577875)

  • 41. Characterization of ester hydrolysis in terms of microscopic rate constants.
    Noszál B; Visky D; Kraszni M
    J Phys Chem B; 2006 Jul; 110(29):14507-14. PubMed ID: 16854163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Base-catalysis of imino proton exchange in DNA: effects of catalyst upon DNA structure and dynamics.
    Folta-Stogniew E; Russu IM
    Biochemistry; 1996 Jun; 35(25):8439-49. PubMed ID: 8679602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing the protonation state of drug molecules: the case of aztreonam.
    Díaz N; Sordo TL; Suárez D; Méndez R; Villacorta JM; Simón L; Rico M; Jiménez MA
    J Med Chem; 2006 Jun; 49(11):3235-43. PubMed ID: 16722641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism for the degradation of erythromycin A and erythromycin A 2'-ethyl succinate in acidic aqueous solution.
    Hassanzadeh A; Barber J; Morris GA; Gorry PA
    J Phys Chem A; 2007 Oct; 111(40):10098-104. PubMed ID: 17880049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermodynamics of cyclophilin catalyzed peptidyl-prolyl isomerization by NMR spectroscopy.
    Videen JS; Stamnes MA; Hsu VL; Goodman M
    Biopolymers; 1994 Feb; 34(2):171-5. PubMed ID: 8142586
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of drug decomposition. Part 74. Kinetics of degradation of minocycline in aqueous solution.
    Pawełczyk E; Matlak B
    Pol J Pharmacol Pharm; 1982; 34(5-6):409-21. PubMed ID: 7187051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 19F NMR spectroscopy for the analysis of RNA secondary structure populations.
    Graber D; Moroder H; Micura R
    J Am Chem Soc; 2008 Dec; 130(51):17230-1. PubMed ID: 19053191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete resolution of the microscopic protonation equilibria of N-methyl-D-aspartic acid and related compounds.
    Boros M; Kökösi J; Vámos J; Noszál B
    J Pharm Biomed Anal; 2007 Mar; 43(4):1306-14. PubMed ID: 17161575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Kinetics of alpha-chymotrypsin catalyzed hydrolysis in equilibrium. III. Rate constants for individual stages and thermodynamic parameters at different pH's].
    Antonov VK; Ginodman LM; Gurova AG
    Mol Biol (Mosk); 1977; 11(5):1160-6. PubMed ID: 36553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rate constants determined by nuclear magnetic resonance.
    Monasterio O
    Methods; 2001 Jun; 24(2):97-103. PubMed ID: 11384185
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NMR chemical shifts of the rhodopsin chromophore in the dark state and in bathorhodopsin: a hybrid QM/MM molecular dynamics study.
    Röhrig UF; Sebastiani D
    J Phys Chem B; 2008 Jan; 112(4):1267-74. PubMed ID: 18177030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tautomeric and microscopic protonation equilibria of some alpha-amino acids.
    Doğan A; Kiliç E
    Anal Biochem; 2007 Jun; 365(1):7-13. PubMed ID: 17416338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Study of the self-association of deoxytetraribonucleoside triphosphate molecules d(ApGpCpT) in aqueous solution by one-dimensional and two- dimensional (1)H NMR spectroscopy].
    Veselkov AN; Dévis D; Dymant LN; Parkes Kh
    Biofizika; 1993; 38(4):627-35. PubMed ID: 8395895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defining protein ensembles with native-state NH exchange: kinetics of interconversion and cooperative units from combined NMR and MS analysis.
    Arrington CB; Teesch LM; Robertson AD
    J Mol Biol; 1999 Jan; 285(3):1265-75. PubMed ID: 9887275
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipophilicity of zwitterions and related species: a new insight.
    Mazák K; Kökösi J; Noszál B
    Eur J Pharm Sci; 2011 Sep; 44(1-2):68-73. PubMed ID: 21726635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic study of alkaline induced hydrolysis of the skeletal muscle relaxant chlorzoxazone using ratio spectra first derivative spectrophotometry.
    Ellaithy MM; El-Ragehy NA; El-Ghobashy MA
    Farmaco; 2003 Apr; 58(4):337-42. PubMed ID: 12727544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Triprotic site-specific acid-base equilibria and related properties of fluoroquinolone antibacterials.
    Rusu A; Tóth G; Szőcs L; Kökösi J; Kraszni M; Gyéresi Á; Noszál B
    J Pharm Biomed Anal; 2012 Jul; 66():50-7. PubMed ID: 22464555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determining the optimal size of small molecule mixtures for high throughput NMR screening.
    Mercier KA; Powers R
    J Biomol NMR; 2005 Mar; 31(3):243-58. PubMed ID: 15803397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the species-specific acid-base equilibria of adrenaline and noradrenaline.
    Mirzahosseini A; Pálla T; Orgován G; Tóth G; Noszál B
    J Pharm Biomed Anal; 2019 Jun; 170():215-219. PubMed ID: 30947124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.