These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 19577925)

  • 1. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains.
    Budhavaram NK; Fan Z
    Bioresour Technol; 2009 Dec; 100(23):5966-72. PubMed ID: 19577925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSF production of lactic acid from cellulosic biosludges.
    Romaní A; Yáñez R; Garrote G; Alonso JL
    Bioresour Technol; 2008 Jul; 99(10):4247-54. PubMed ID: 17928224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intermittent addition of cellulase for production of L-lactic acid from wastewater sludge by simultaneous saccharification and fermentation.
    Nakasaki K; Adachi T
    Biotechnol Bioeng; 2003 May; 82(3):263-70. PubMed ID: 12599252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF.
    Kang L; Wang W; Lee YY
    Appl Biochem Biotechnol; 2010 May; 161(1-8):53-66. PubMed ID: 20099047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophilic production of lactic acid using integrated membrane bioreactor systems coupled with monopolar electrodialysis.
    Danner H; Madzingaidzo L; Thomasser C; Neureiter M; Braun R
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):160-9. PubMed ID: 12111141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum.
    Oshiro M; Hanada K; Tashiro Y; Sonomoto K
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1177-85. PubMed ID: 20502892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor.
    Fan Z; South C; Lyford K; Munsie J; van Walsum P; Lynd LR
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):93-101. PubMed ID: 14615931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of lactic acid with reducing excess sludge by lactate fermentation.
    Maeda T; Yoshimura T; Shimazu T; Shirai Y; Ogawa HI
    J Hazard Mater; 2009 Sep; 168(2-3):656-63. PubMed ID: 19286312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-up of L-lactic acid production by mutant strain Rhizopus sp. MK-96-1196 from 0.003 m3 to 5 m3 in airlift bioreactors.
    Liu T; Miura S; Yaguchi M; Arimura T; Park EY; Okabe M
    J Biosci Bioeng; 2006 Jan; 101(1):9-12. PubMed ID: 16503284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011.
    Ohkouchi Y; Inoue Y
    Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.
    Ma K; Maeda T; You H; Shirai Y
    Bioresour Technol; 2014 Jan; 151():28-35. PubMed ID: 24201025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-lactic acid production by Bacillus subtilis MUR1.
    Gao T; Wong Y; Ng C; Ho K
    Bioresour Technol; 2012 Oct; 121():105-10. PubMed ID: 22858473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.
    Zhou X; Ye L; Wu JC
    Appl Microbiol Biotechnol; 2013 May; 97(10):4309-14. PubMed ID: 23354450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation.
    Zhu Y; Lee YY; Elander RT
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):721-38. PubMed ID: 18478429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology.
    Maneeboon T; Vanichsriratana W; Pomchaitaward C; Kitpreechavanich V
    Appl Biochem Biotechnol; 2010 May; 161(1-8):137-46. PubMed ID: 20091139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation.
    Lee SM; Koo YM; Lin J
    Adv Biochem Eng Biotechnol; 2004; 87():173-94. PubMed ID: 15217107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid hydrolysis of sugarcane bagasse for lactic acid production.
    Laopaiboon P; Thani A; Leelavatcharamas V; Laopaiboon L
    Bioresour Technol; 2010 Feb; 101(3):1036-43. PubMed ID: 19766480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.