BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19577950)

  • 1. Mechanisms controlling glideosome function in apicomplexans.
    Daher W; Soldati-Favre D
    Curr Opin Microbiol; 2009 Aug; 12(4):408-14. PubMed ID: 19577950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa.
    Keeley A; Soldati D
    Trends Cell Biol; 2004 Oct; 14(10):528-32. PubMed ID: 15450974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The glideosome, a unique machinery that assists the Apicomplexa in gliding into host cells].
    Frénal K; Soldati-Favre D
    Med Sci (Paris); 2013 May; 29(5):515-22. PubMed ID: 23732101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular and molecular mechanics of gliding locomotion in eukaryotes.
    Heintzelman MB
    Int Rev Cytol; 2006; 251():79-129. PubMed ID: 16939778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gliding motility powers invasion and egress in Apicomplexa.
    Frénal K; Dubremetz JF; Lebrun M; Soldati-Favre D
    Nat Rev Microbiol; 2017 Nov; 15(11):645-660. PubMed ID: 28867819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of apicomplexan actin-based motility.
    Baum J; Papenfuss AT; Baum B; Speed TP; Cowman AF
    Nat Rev Microbiol; 2006 Aug; 4(8):621-8. PubMed ID: 16845432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of phosphorylation in Toxoplasma glideosome assembly and function.
    Jacot D; Frénal K; Marq JB; Sharma P; Soldati-Favre D
    Cell Microbiol; 2014 Oct; 16(10):1518-32. PubMed ID: 24779470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dissection of host cell invasion by the apicomplexans: the glideosome.
    Soldati-Favre D
    Parasite; 2008 Sep; 15(3):197-205. PubMed ID: 18814681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and functional aspects of parasite invasion.
    Soldati D; Foth BJ; Cowman AF
    Trends Parasitol; 2004 Dec; 20(12):567-74. PubMed ID: 15522666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis.
    Dowse T; Soldati D
    Curr Opin Microbiol; 2004 Aug; 7(4):388-96. PubMed ID: 15358257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion.
    Jacot D; Tosetti N; Pires I; Stock J; Graindorge A; Hung YF; Han H; Tewari R; Kursula I; Soldati-Favre D
    Cell Host Microbe; 2016 Dec; 20(6):731-743. PubMed ID: 27978434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gliding motility in apicomplexan parasites.
    Heintzelman MB
    Semin Cell Dev Biol; 2015 Oct; 46():135-42. PubMed ID: 26428297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxoplasma as a novel system for motility.
    Soldati D; Meissner M
    Curr Opin Cell Biol; 2004 Feb; 16(1):32-40. PubMed ID: 15037302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TREP, a novel protein necessary for gliding motility of the malaria sporozoite.
    Combe A; Moreira C; Ackerman S; Thiberge S; Templeton TJ; Ménard R
    Int J Parasitol; 2009 Mar; 39(4):489-96. PubMed ID: 19000911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular parasite invasion strategies.
    Sibley LD
    Science; 2004 Apr; 304(5668):248-53. PubMed ID: 15073368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invasion factors of apicomplexan parasites: essential or redundant?
    Meissner M; Ferguson DJ; Frischknecht F
    Curr Opin Microbiol; 2013 Aug; 16(4):438-44. PubMed ID: 23727286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inner membrane complex 1l protein of Plasmodium falciparum links membrane lipids with cytoskeletal element 'actin' and its associated motor 'myosin'.
    Kumar V; Behl A; Kapoor P; Nayak B; Singh G; Singh AP; Mishra S; Kang TS; Mishra PC; Hora R
    Int J Biol Macromol; 2019 Apr; 126():673-684. PubMed ID: 30599160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin/myosin-based gliding motility in apicomplexan parasites.
    Matuschewski K; Schüler H
    Subcell Biochem; 2008; 47():110-20. PubMed ID: 18512346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the apicomplexan rhoptry neck proteins.
    Proellocks NI; Coppel RL; Waller KL
    Trends Parasitol; 2010 Jun; 26(6):297-304. PubMed ID: 20347614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion.
    Frénal K; Marq JB; Jacot D; Polonais V; Soldati-Favre D
    PLoS Pathog; 2014 Oct; 10(10):e1004504. PubMed ID: 25393004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.