These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 19578012)
1. Mitochondrial proteomics in experimental autoimmune uveitis oxidative stress. Saraswathy S; Rao NA Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5559-66. PubMed ID: 19578012 [TBL] [Abstract][Full Text] [Related]
2. Posttranslational modification of differentially expressed mitochondrial proteins in the retina during early experimental autoimmune uveitis. Saraswathy S; Rao NA Mol Vis; 2011; 17():1814-21. PubMed ID: 21850155 [TBL] [Abstract][Full Text] [Related]
3. Elevated retina-specific expression of the small heat shock protein, alphaA-crystallin, is associated with photoreceptor protection in experimental uveitis. Rao NA; Saraswathy S; Wu GS; Katselis GS; Wawrousek EF; Bhat S Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1161-71. PubMed ID: 18326745 [TBL] [Abstract][Full Text] [Related]
4. The role of TLR4 in photoreceptor {alpha}a crystallin upregulation during early experimental autoimmune uveitis. Saraswathy S; Nguyen AM; Rao NA Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3680-6. PubMed ID: 20207969 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial oxidative DNA damage in experimental autoimmune uveitis. Khurana RN; Parikh JG; Saraswathy S; Wu GS; Rao NA Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3299-304. PubMed ID: 18450595 [TBL] [Abstract][Full Text] [Related]
6. The Role of αA-Crystallin in Experimental Autoimmune Uveitis. Wang L; Zhang L; Wang ZF; Huang ZX; Hu X; Gong L; Tang X; Liu F; Luo Z; Ji W; Hu WF; Woodward Z; Zhu J; Liu YZ; Nguyen QD; Li DW Curr Mol Med; 2015; 15(6):558-64. PubMed ID: 26238368 [TBL] [Abstract][Full Text] [Related]
7. Post-translational modification of crystallins in vitreous body from experimental autoimmune uveitis of rats. Bahk SC; Jang JU; Choi CU; Lee SH; Park ZY; Yang JY; Kim JD; Yang YS; Chung HT J Proteome Res; 2007 Oct; 6(10):3891-8. PubMed ID: 17803294 [TBL] [Abstract][Full Text] [Related]
8. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats. Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790 [TBL] [Abstract][Full Text] [Related]
9. Increased expression of αA-crystallin in human diabetic eye. Kase S; Ishida S; Rao NA Int J Mol Med; 2011 Oct; 28(4):505-11. PubMed ID: 21617844 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
12. Photoreceptor mitochondrial oxidative stress in early experimental autoimmune uveoretinitis. Rajendram R; Saraswathy S; Rao NA Br J Ophthalmol; 2007 Apr; 91(4):531-7. PubMed ID: 17035279 [TBL] [Abstract][Full Text] [Related]
13. Photoreceptor mitochondrial tyrosine nitration in experimental uveitis. Wu GS; Lee TD; Moore RE; Rao NA Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2271-81. PubMed ID: 15980211 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of rat retina in a steroid-induced ocular hypertension model: potential vulnerability to oxidative stress. Miyara N; Shinzato M; Yamashiro Y; Iwamatsu A; Kariya KI; Sawaguchi S Jpn J Ophthalmol; 2008; 52(2):84-90. PubMed ID: 18626730 [TBL] [Abstract][Full Text] [Related]
15. Comparative Proteomic Analysis of Two Uveitis Models in Lewis Rats. Pepple KL; Rotkis L; Wilson L; Sandt A; Van Gelder RN Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8449-56. PubMed ID: 26747776 [TBL] [Abstract][Full Text] [Related]
16. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
17. alpha-Crystallin distribution in retinal pigment epithelium and effect of gene knockouts on sensitivity to oxidative stress. Yaung J; Jin M; Barron E; Spee C; Wawrousek EF; Kannan R; Hinton DR Mol Vis; 2007 Apr; 13():566-77. PubMed ID: 17438522 [TBL] [Abstract][Full Text] [Related]
18. microRNA 146a ameliorates retinal damage in experimental autoimmune uveitis. Saraswathy S; Rao NA Front Ophthalmol (Lausanne); 2023; 3():1130202. PubMed ID: 38983073 [TBL] [Abstract][Full Text] [Related]
19. Quantitative proteomic analysis of rat retina with experimental autoimmune uveitis based on tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS. Liu B; Yin X; Wei H; Wang Z; Tang H; Qiu Y; Hao Y; Zhang X; Bi H; Guo D J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Sep; 1153():122293. PubMed ID: 32750637 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial proteome during salt stress-induced programmed cell death in rice. Chen X; Wang Y; Li J; Jiang A; Cheng Y; Zhang W Plant Physiol Biochem; 2009 May; 47(5):407-15. PubMed ID: 19217306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]