These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19578021)

  • 1. Pro-photoreceptor activity of chick neurogenin1.
    Yan RT; He L; Wang SZ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5567-76. PubMed ID: 19578021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proneural gene ash1 promotes amacrine cell production in the chick retina.
    Mao W; Yan RT; Wang SZ
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):88-104. PubMed ID: 19067322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurogenin3 promotes early retinal neurogenesis.
    Ma W; Yan RT; Mao W; Wang SZ
    Mol Cell Neurosci; 2009 Feb; 40(2):187-98. PubMed ID: 19028584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement of neuroD for photoreceptor formation in the chick retina.
    Yan RT; Wang SZ
    Invest Ophthalmol Vis Sci; 2004 Jan; 45(1):48-58. PubMed ID: 14691153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons.
    Li X; Ma W; Zhuo Y; Yan RT; Wang SZ
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):516-25. PubMed ID: 19628733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role of ath5 in inducing neuroD and the photoreceptor pathway.
    Ma W; Yan RT; Xie W; Wang SZ
    J Neurosci; 2004 Aug; 24(32):7150-8. PubMed ID: 15306648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurogenin1 effectively reprograms cultured chick retinal pigment epithelial cells to differentiate toward photoreceptors.
    Yan RT; Liang L; Ma W; Li X; Xie W; Wang SZ
    J Comp Neurol; 2010 Feb; 518(4):526-46. PubMed ID: 20029995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogramming chick RPE progeny cells to differentiate towards retinal neurons by ash1.
    Mao W; Yan RT; Wang SZ
    Mol Vis; 2008; 14():2309-20. PubMed ID: 19093008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish.
    Ochocinska MJ; Hitchcock PF
    Mech Dev; 2009; 126(3-4):128-41. PubMed ID: 19121642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed expression of the Crx gene and photoreceptor development in the Chx10-deficient retina.
    Rutherford AD; Dhomen N; Smith HK; Sowden JC
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):375-84. PubMed ID: 14744875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1.
    Evsen L; Sugahara S; Uchikawa M; Kondoh H; Wu DK
    J Neurosci; 2013 Feb; 33(9):3879-90. PubMed ID: 23447599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bHLH transcriptional network regulating the specification of retinal ganglion cells.
    Matter-Sadzinski L; Puzianowska-Kuznicka M; Hernandez J; Ballivet M; Matter JM
    Development; 2005 Sep; 132(17):3907-21. PubMed ID: 16079155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish.
    Ochocinska MJ; Hitchcock PF
    J Comp Neurol; 2007 Mar; 501(1):1-12. PubMed ID: 17206615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. neuroD induces photoreceptor cell overproduction in vivo and de novo generation in vitro.
    Yan RT; Wang SZ
    J Neurobiol; 1998 Sep; 36(4):485-96. PubMed ID: 9740021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An essential role for RAX homeoprotein and NOTCH-HES signaling in Otx2 expression in embryonic retinal photoreceptor cell fate determination.
    Muranishi Y; Terada K; Inoue T; Katoh K; Tsujii T; Sanuki R; Kurokawa D; Aizawa S; Tamaki Y; Furukawa T
    J Neurosci; 2011 Nov; 31(46):16792-807. PubMed ID: 22090505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Misexpression of cNSCL1 disrupts retinal development.
    Li CM; Yan RT; Wang SZ
    Mol Cell Neurosci; 1999 Jul; 14(1):17-27. PubMed ID: 10433814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreceptor-like cells from reprogramming cultured mammalian RPE cells.
    Yan RT; Li X; Huang J; Guidry C; Wang SZ
    Mol Vis; 2013; 19():1178-87. PubMed ID: 23734087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. neurogenin2 elicits the genesis of retinal neurons from cultures of nonneural cells.
    Yan RT; Ma WX; Wang SZ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15014-9. PubMed ID: 11752450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The MicroRNA, miR-18a, Regulates NeuroD and Photoreceptor Differentiation in the Retina of Zebrafish.
    Taylor SM; Giuffre E; Moseley P; Hitchcock PF
    Dev Neurobiol; 2019 Feb; 79(2):202-219. PubMed ID: 30615274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian clockwork machinery in neural retina: evidence for the presence of functional clock components in photoreceptor-enriched chick retinal cell cultures.
    Chaurasia SS; Pozdeyev N; Haque R; Visser A; Ivanova TN; Iuvone PM
    Mol Vis; 2006 Mar; 12():215-23. PubMed ID: 16604054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.