These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19578536)

  • 1. Precocious locomotor behavior begins in the egg: development of leg muscle patterns for stepping in the chick.
    Ryu YU; Bradley NS
    PLoS One; 2009 Jul; 4(7):e6111. PubMed ID: 19578536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles.
    Bradley NS; Ryu YU; Yeseta MC
    J Exp Biol; 2014 Mar; 217(Pt 6):896-907. PubMed ID: 24265423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast locomotor burst generation in late stage embryonic motility.
    Bradley NS; Ryu YU; Lin J
    J Neurophysiol; 2008 Apr; 99(4):1733-42. PubMed ID: 18272869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle muscle tenotomy does not alter ankle flexor muscle recruitment bias during locomotor-related repetitive limb movement in late-stage chick embryos.
    Sun SY; Baker LL; Bradley NS
    Dev Psychobiol; 2018 Mar; 60(2):150-164. PubMed ID: 29193030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light accelerates morphogenesis and acquisition of interlimb stepping in chick embryos.
    Sindhurakar A; Bradley NS
    PLoS One; 2012; 7(12):e51348. PubMed ID: 23236480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in flexor and extensor activity during locomotor-related leg movements in chick embryos.
    Sun SY; Bradley NS
    Dev Psychobiol; 2017 Apr; 59(3):357-366. PubMed ID: 28323348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Left-Right Locomotor Coordination in Human Neonates.
    Dewolf AH; La Scaleia V; Fabiano A; Sylos-Labini F; Mondi V; Picone S; Di Paolo A; Paolillo P; Ivanenko Y; Lacquaniti F
    J Neurosci; 2022 Aug; 42(34):6566-6580. PubMed ID: 35831172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and survival of thoracic motoneurons and hindlimb musculature following transplantation of the thoracic neural tube to the lumbar region in the chick embryo: functional aspects.
    O'Brien MK; Landmesser L; Oppenheim RW
    J Neurobiol; 1990 Mar; 21(2):341-55. PubMed ID: 2307978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hindlimb extensor muscle function during jumping and swimming in the toad (Bufo marinus).
    Gillis GB; Biewener AA
    J Exp Biol; 2000 Dec; 203(Pt 23):3547-63. PubMed ID: 11060216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion.
    Bradley NS; Solanki D; Zhao D
    J Neurophysiol; 2005 Dec; 94(6):4401-11. PubMed ID: 16162824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinematic analysis of hindlimb motility in 9- and 10-day-old chick embryos.
    Watson SJ; Bekoff A
    J Neurobiol; 1990 Jun; 21(4):651-60. PubMed ID: 2376735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in leg coordination of the chick at embryonic days 9, 11, and 13: uncoupling of ankle movements.
    Sharp AA; Ma E; Bekoff A
    J Neurophysiol; 1999 Nov; 82(5):2406-14. PubMed ID: 10561414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The modulation of locomotor speed is maintained following partial denervation of ankle extensors in spinal cats.
    Harnie J; Côté-Sarrazin C; Hurteau MF; Desrochers E; Doelman A; Amhis N; Frigon A
    J Neurophysiol; 2018 Sep; 120(3):1274-1285. PubMed ID: 29897865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat.
    Guertin P; Angel MJ; Perreault MC; McCrea DA
    J Physiol; 1995 Aug; 487(1):197-209. PubMed ID: 7473249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromyographic activity patterns of ankle flexor and extensor muscles during spontaneous and L-DOPA-induced locomotion in freely moving neonatal rats.
    Navarrete R; Slawińska U; Vrbová G
    Exp Neurol; 2002 Feb; 173(2):256-65. PubMed ID: 11822889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor patterns and kinematics during backward walking in the pacific giant salamander: evidence for novel motor output.
    Ashley-Ross MA; Lauder GV
    J Neurophysiol; 1997 Dec; 78(6):3047-60. PubMed ID: 9405524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.
    Buford JA; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):756-66. PubMed ID: 2230922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat.
    Frigon A; Rossignol S
    J Neurophysiol; 2008 Feb; 99(2):989-98. PubMed ID: 18094100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.