These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19579779)

  • 1. [Antagonistic interactions between saprotrophic fungi and geohelminths. 2. Saprotrophic fungi in biocontrol of parasitic geohelminths of humans and animals].
    Jaborowska-Jarmoluk M; Mazurkiewicz-Zapałowicz K; Kołodziejczyk L
    Wiad Parazytol; 2009; 55(1):9-17. PubMed ID: 19579779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Antagonistic interactions between saprotrophic fungi and geohelminths. 1. Saprotrophic fungi in the biological control of phytopathogenic geohelminths].
    Mazurkiewicz-Zapałowicz K; Kołodziejczyk L
    Wiad Parazytol; 2009; 55(1):1-8. PubMed ID: 19579778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes.
    Soto-Barrientos N; de Oliveira J; Vega-Obando R; Montero-Caballero D; Vargas B; Hernández-Gamboa J; Orozco-Solano C
    Rev Biol Trop; 2011 Mar; 59(1):37-52. PubMed ID: 21513192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Limitation in the population of parasitic geohelminths by saprotrophic soil fungi and their secretions].
    Jaborowska M
    Ann Acad Med Stetin; 2006; 52(3):37-46; discussion 46. PubMed ID: 17385347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Predacious nematode-destroying fungi].
    Czygier M; Boguś MI
    Wiad Parazytol; 2001; 47(1):25-31. PubMed ID: 16888947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association and predatory capacity of fungi
    Vieira ÍS; Oliveira IC; Campos AK; Araújo JV
    Parasitology; 2019 Sep; 146(10):1347-1351. PubMed ID: 31148530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the effect of the chosen species of saprotrophic fungi on the development of Toxocara canis and Ascaris suum eggs.
    Mazurkiewicz-Zapałowicz K; Jaborowska-Jarmoluk M; Kołodziejczyk L; Kuźna-Grygiel W
    Ann Parasitol; 2014; 60(3):215-20. PubMed ID: 25281819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes.
    Liang LM; Zou CG; Xu J; Zhang KQ
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180317. PubMed ID: 30967028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.
    Meyer SL
    Pest Manag Sci; 2003; 59(6-7):665-70. PubMed ID: 12846316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prospects for biological control of the free-living stages of nematode parasites of livestock.
    Waller PJ; Faedo M
    Int J Parasitol; 1996; 26(8-9):915-25. PubMed ID: 8923139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of nematophagous fungi in South Africa.
    Durand DT; Boshoff HM; Michael LM; Krecek RC
    Onderstepoort J Vet Res; 2005 Jun; 72(2):185-7. PubMed ID: 16137137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population biology and biological control of nematodes.
    Jaffee BA
    Can J Microbiol; 1992 May; 38(5):359-64. PubMed ID: 1643579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.
    Li J; Zou C; Xu J; Ji X; Niu X; Yang J; Huang X; Zhang KQ
    Annu Rev Phytopathol; 2015; 53():67-95. PubMed ID: 25938277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological interactions between soil saprotrophic fungi and Ascaris suum eggs.
    Blaszkowska J; Wojcik A; Kurnatowski P; Szwabe K
    Vet Parasitol; 2013 Sep; 196(3-4):401-8. PubMed ID: 23534981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence and diversity of egg pathogenic fungi of the Mediterranean cereal cyst nematode Heterodera latipons.
    Ismail S; Sikora RA; Schuster RP
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2b):645-53. PubMed ID: 12425089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of different sample types associated with sheep and cattle for the presence of nematophagous fungi in China.
    Cai KZ; Liu JL; Liu W; Wang BB; Xu Q; Sun LJ; Chen MY; Zhao MW; Wu JY; Li XS; Yang J; Wei S; Chen CR; Ma ZR; Xu CL; Wang F; Hu QL; Fang WX; Zheng TH; Wang YY; Zhu WL; Li D; Li Q; Zhang C; Cai B; Wang F; Yang ZY; Liu YQ
    J Basic Microbiol; 2016 Mar; 56(3):214-28. PubMed ID: 26344826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of nematophagous fungi in the biological control of nematode parasites of livestock.
    Waller PJ; Larsen M
    Int J Parasitol; 1993 Jul; 23(4):539-46. PubMed ID: 8354604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals.
    Braga FR; de Araújo JV
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):71-82. PubMed ID: 24265027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies.
    Terrill TH; Larsen M; Samples O; Husted S; Miller JE; Kaplan RM; Gelaye S
    Vet Parasitol; 2004 Apr; 120(4):285-96. PubMed ID: 15063939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biological control of helminths in grazing animals using nematophagous fungi].
    Hertzberg H; Larsen M; Maurer V
    Berl Munch Tierarztl Wochenschr; 2002; 115(7-8):278-85. PubMed ID: 12174725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.