BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19580279)

  • 1. Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant.
    Dementin S; Leroux F; Cournac L; de Lacey AL; Volbeda A; Léger C; Burlat B; Martinez N; Champ S; Martin L; Sanganas O; Haumann M; Fernández VM; Guigliarelli B; Fontecilla-Camps JC; Rousset M
    J Am Chem Soc; 2009 Jul; 131(29):10156-64. PubMed ID: 19580279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha.
    Lenz O; Ludwig M; Schubert T; Bürstel I; Ganskow S; Goris T; Schwarze A; Friedrich B
    Chemphyschem; 2010 Apr; 11(6):1107-19. PubMed ID: 20186906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of amino acid substitutions near the catalytic site on the spectral properties of an O2-tolerant membrane-bound [NiFe] hydrogenase.
    Saggu M; Ludwig M; Friedrich B; Hildebrandt P; Bittl R; Lendzian F; Lenz O; Zebger I
    Chemphyschem; 2010 Apr; 11(6):1215-24. PubMed ID: 20376875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site.
    Liebgott PP; de Lacey AL; Burlat B; Cournac L; Richaud P; Brugna M; Fernandez VM; Guigliarelli B; Rousset M; Léger C; Dementin S
    J Am Chem Soc; 2011 Feb; 133(4):986-97. PubMed ID: 21175174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.
    Topin J; Rousset M; Antonczak S; Golebiowski J
    Proteins; 2012 Mar; 80(3):677-82. PubMed ID: 22189859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism.
    Ogata H; Lubitz W; Higuchi Y
    Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Two-step" chronoamperometric method for studying the anaerobic inactivation of an oxygen tolerant NiFe hydrogenase.
    Fourmond V; Infossi P; Giudici-Orticoni MT; Bertrand P; Léger C
    J Am Chem Soc; 2010 Apr; 132(13):4848-57. PubMed ID: 20230028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches to developing biological H(2)-photoproducing organisms and processes.
    Ghirardi ML; King PW; Posewitz MC; Maness PC; Fedorov A; Kim K; Cohen J; Schulten K; Seibert M
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):70-2. PubMed ID: 15667268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production.
    McIntosh CL; Germer F; Schulz R; Appel J; Jones AK
    J Am Chem Soc; 2011 Jul; 133(29):11308-19. PubMed ID: 21675712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli.
    Kim JY; Jo BH; Cha HJ
    J Biotechnol; 2011 Sep; 155(3):312-9. PubMed ID: 21794837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states.
    Lamle SE; Albracht SP; Armstrong FA
    J Am Chem Soc; 2004 Nov; 126(45):14899-909. PubMed ID: 15535717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale simulation reveals multiple pathways for H2 and O2 transport in a [NiFe]-hydrogenase.
    Wang PH; Best RB; Blumberger J
    J Am Chem Soc; 2011 Mar; 133(10):3548-56. PubMed ID: 21341658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microscopic model for gas diffusion dynamics in a [NiFe]-hydrogenase.
    Wang PH; Best RB; Blumberger J
    Phys Chem Chem Phys; 2011 May; 13(17):7708-19. PubMed ID: 21409188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of alterations near the [NiFe] active site on the function of the H(2) sensor from Ralstonia eutropha.
    Gebler A; Burgdorf T; De Lacey AL; Rüdiger O; Martinez-Arias A; Lenz O; Friedrich B
    FEBS J; 2007 Jan; 274(1):74-85. PubMed ID: 17222178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Recent advances on the structure and catalytic mechanism of hydrogenase].
    Liu JJ; Long MN
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):348-53. PubMed ID: 16108354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity.
    Duché O; Elsen S; Cournac L; Colbeau A
    FEBS J; 2005 Aug; 272(15):3899-908. PubMed ID: 16045760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases.
    Horch M; Lauterbach L; Lenz O; Hildebrandt P; Zebger I
    FEBS Lett; 2012 Mar; 586(5):545-56. PubMed ID: 22056977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2.
    Lauterbach L; Lenz O
    J Am Chem Soc; 2013 Nov; 135(47):17897-905. PubMed ID: 24180286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state.
    Ogata H; Hirota S; Nakahara A; Komori H; Shibata N; Kato T; Kano K; Higuchi Y
    Structure; 2005 Nov; 13(11):1635-42. PubMed ID: 16271886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.