These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19580352)

  • 1. Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Aug; 23(8):1247-53. PubMed ID: 19580352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
    Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD
    J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048
    [No Abstract]   [Full Text] [Related]  

  • 4. Third prize: the impact of fluid environment manipulation on shockwave lithotripsy artificial calculi fragmentation rates.
    Méndez-Probst CE; Fernadez A; Erdeljan P; Vanjecek M; Cadieux PA; Razvi H
    J Endourol; 2011 Mar; 25(3):397-401. PubMed ID: 21401394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of fat, muscle, and kidney on stone fragmentation by shockwave lithotripsy: an in vitro study.
    Hammad FT; Al Najjar A
    J Endourol; 2010 Feb; 24(2):289-92. PubMed ID: 20078241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [COMPARISON BETWEEN EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY AT 120 AND 60 SHOCKWAVES PER MINUTE FOR TREATMENT OF URINARY STONES].
    Kashima S; Horikawa Y; Obara T; Muto Y; Koizumi A; Honma N; Akihama S; Shimoda N
    Nihon Hinyokika Gakkai Zasshi; 2016; 107(2):93-99. PubMed ID: 28442676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of shockwaves with infected kidney stones: is there a bactericidal effect?
    Quintero Mdel S; Alvarez UM; Wacher C; Gutiérrez J; Castaño-Tostado E; Fernández F; Loske AM
    J Endourol; 2008 Aug; 22(8):1629-37. PubMed ID: 18657029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Vivo relation between CT attenuation value and shockwave fragmentation.
    Hurtado F; Gutiérrez J; Castaño-Tostado E; Bustos J; Mues E; Del Sol Quintero M; Méndez A; Loske AM
    J Endourol; 2007 Mar; 21(3):343-6. PubMed ID: 17444784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency.
    Yong DZ; Lipkin ME; Simmons WN; Sankin G; Albala DM; Zhong P; Preminger GM
    J Endourol; 2011 Sep; 25(9):1507-11. PubMed ID: 21834658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative results of shockwave lithotripsy for renal calculi in upper, middle, and lower calices.
    Turna B; Ekren F; Nazli O; Akbay K; Altay B; Ozyurt C; Cikili N
    J Endourol; 2007 Sep; 21(9):951-6. PubMed ID: 17941767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CT attenuation value and shockwave fragmentation.
    Favela R; Gutierrez J; Bustos J; Castaño-Tostado E; Loske AM
    J Endourol; 2005; 19(1):5-10. PubMed ID: 15735374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Magnitude of Effect of Bone Structures on Shockwave Lithotripsy Fragmentation: Results from an In Vitro Study.
    Olvera-Posada D; Alenezi H; Tailly T; Dion M; Denstedt JD; Razvi H
    J Endourol; 2016 May; 30(5):544-9. PubMed ID: 26732533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracorporeal shockwave lithotripsy in pediatrics.
    D'Addessi A; Bongiovanni L; Sasso F; Gulino G; Falabella R; Bassi P
    J Endourol; 2008 Jan; 22(1):1-12. PubMed ID: 18177237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-release versus rigid reflector for extracorporeal shockwave lithotripsy.
    Loske AM; Prieto FE
    J Endourol; 2002 Jun; 16(5):273-80. PubMed ID: 12184076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous twin-pulse technique to improve efficacy of SWL: preliminary results of an experimental study.
    Sheir KZ; El-Sheikh AM; Ghoneim MA
    J Endourol; 2001 Dec; 15(10):965-74. PubMed ID: 11789977
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Rassweiler J; Rieker P; Pecha R; Dressel M; Rassweiler-Seyfried MC
    J Endourol; 2022 Feb; 36(2):266-272. PubMed ID: 34314251
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence.
    Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL
    J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CT Texture Analysis of Ex Vivo Renal Stones Predicts Ease of Fragmentation with Shockwave Lithotripsy.
    Cui HW; Devlies W; Ravenscroft S; Heers H; Freidin AJ; Cleveland RO; Ganeshan B; Turney BW
    J Endourol; 2017 Jul; 31(7):694-700. PubMed ID: 28474533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Percutaneous stone implantation in the pig kidney: a new animal model for lithotripsy research.
    Paterson RF; Lingeman JE; Evan AP; Connors BA; Williams JC; McAteer JA
    J Endourol; 2002 Oct; 16(8):543-7. PubMed ID: 12470460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.