BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 19580370)

  • 1. Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells.
    Tseng SY; Nishimoto KP; Silk KM; Majumdar AS; Dawes GN; Waldmann H; Fairchild PJ; Lebkowski JS; Reddy A
    Regen Med; 2009 Jul; 4(4):513-26. PubMed ID: 19580370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optimized cocktail of small molecule inhibitors promotes the maturation of dendritic cells in GM-CSF mouse bone marrow culture.
    Matsuba S; Ura H; Saito F; Ogasawara C; Shimodaira S; Niida Y; Onai N
    Front Immunol; 2023; 14():1264609. PubMed ID: 37901221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing.
    McCracken IR; Taylor RS; Kok FO; de la Cuesta F; Dobie R; Henderson BEP; Mountford JC; Caudrillier A; Henderson NC; Ponting CP; Baker AH
    Eur Heart J; 2020 Mar; 41(9):1024-1036. PubMed ID: 31242503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed differentiation of human embryonic stem cells into parathyroid cells and establishment of parathyroid organoids.
    Wang G; Du Y; Cui X; Xu T; Li H; Dong M; Li W; Li Y; Cai W; Xu J; Li S; Yang X; Wu Y; Chen H; Li X
    Cell Prolif; 2024 Mar; ():e13634. PubMed ID: 38494923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adapting collagen/CNT matrix in directing hESC differentiation.
    Sridharan I; Kim T; Wang R
    Biochem Biophys Res Commun; 2009 Apr; 381(4):508-12. PubMed ID: 19233124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell RNA-seq Analysis of a Human Embryonic Stem Cell to Endothelial Cell System Based on Transcription Factor Overexpression.
    Xu X; Chen J; Zhao H; Pi Y; Lin G; Hu L
    Stem Cell Rev Rep; 2023 Oct; 19(7):2497-2509. PubMed ID: 37537495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycopolymers With On/Off Anchors: Confinement Effect on Regulating Dendritic Cells.
    Heng X; Shan F; Yang H; Hu J; Feng R; Tian W; Chen G; Chen H
    Adv Healthc Mater; 2023 Nov; 12(28):e2301536. PubMed ID: 37590030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency.
    Nishimoto KP; Tseng SY; Lebkowski JS; Reddy A
    Regen Med; 2011 May; 6(3):303-18. PubMed ID: 21548736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy.
    Fairchild PJ; Leishman A; Sachamitr P; Telfer C; Hackett S; Davies TJ
    Regen Med; 2015; 10(3):275-86. PubMed ID: 25933237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of dendritic cells from human embryonic stem cells.
    Silk KM; Tseng SY; Nishimoto KP; Lebkowski J; Reddy A; Fairchild PJ
    Methods Mol Biol; 2011; 767():449-61. PubMed ID: 21822895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Off the shelf' immunotherapies: Generation and application of pluripotent stem cell-derived immune cells.
    Wang C; Liu J; Li W
    Cell Prolif; 2023 Apr; 56(4):e13425. PubMed ID: 36855955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of Human Induced Pluripotent Stem Cells (iPS Cells) and Embryonic Stem Cells (ES Cells) into Dendritic Cell (DC) Subsets.
    Sontag S; Förster M; Seré K; Zenke M
    Bio Protoc; 2017 Aug; 7(15):e2419. PubMed ID: 34541147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Type 1 Diabetes Using Pluripotent Stem Cell Technology.
    Joshi K; Cameron F; Tiwari S; Mannering SI; Elefanty AG; Stanley EG
    Front Endocrinol (Lausanne); 2021; 12():635662. PubMed ID: 33868170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Immune-Modulatory Properties of iPSC-Derived Antigen-Presenting Cells.
    Ackermann M; Dragon AC; Lachmann N
    Transfus Med Hemother; 2020 Dec; 47(6):444-453. PubMed ID: 33442339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of macrophage-like immunosuppressive cells from common marmoset ES cells by stepwise differentiation with DZNep.
    Tsuji H; Otsuka R; Wada H; Murata T; Sasaki A; Itoh M; Baghdadi M; Sasaki E; Seino KI
    Sci Rep; 2020 Jul; 10(1):12625. PubMed ID: 32724084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Antigen Presenting Cells: An Off the Shelf Approach for Generation of Desirable T-Cell Populations for Broad Application of Adoptive Immunotherapy.
    Hasan AN; Selvakumar A; O'Reilly RJ
    Adv Genet Eng; 2015; 4(3):. PubMed ID: 29644163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141
    Sachamitr P; Leishman AJ; Davies TJ; Fairchild PJ
    Front Immunol; 2017; 8():1935. PubMed ID: 29358940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inherent Immunogenicity or Lack Thereof of Pluripotent Stem Cells: Implications for Cell Replacement Therapy.
    Chhabra A
    Front Immunol; 2017; 8():993. PubMed ID: 28868053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing the properties of dendritic cells in the pursuit of immunological tolerance.
    Horton C; Shanmugarajah K; Fairchild PJ
    Biomed J; 2017 Apr; 40(2):80-93. PubMed ID: 28521905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antigenically Modified Human Pluripotent Stem Cells Generate Antigen-Presenting Dendritic Cells.
    Zeng J; Wu C; Wang S
    Sci Rep; 2015 Oct; 5():15262. PubMed ID: 26471005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.