These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 195805)
21. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde. Scharschmidt M; Fisher MA; Cleland WW Biochemistry; 1984 Nov; 23(23):5471-8. PubMed ID: 6391543 [TBL] [Abstract][Full Text] [Related]
22. Yeast alcohol dehydrogenase: SH groups, disulfide groups, quaternary structure, and reactivation by reductive cleavage of disulfide groups. Bühner M; Sund H Eur J Biochem; 1969 Nov; 11(1):73-9. PubMed ID: 5353605 [No Abstract] [Full Text] [Related]
23. The conformation of adenosine diphosphoribose and 8-bromoadenosine diphosphoribose when bound to liver alcohol dehydrogenase. Abdallah MA; Biellmann JF; Nordström B; Brändén CI Eur J Biochem; 1975 Jan; 50(3):475-81. PubMed ID: 163741 [TBL] [Abstract][Full Text] [Related]
24. Reaction mechanism of yeast alcohol-dehydrogenase in the steady state. Kinetic possibility of two catalytic centres. Feraudi M; Kohlmeier M; Schmolz G Ital J Biochem; 1977; 26(1):12-21. PubMed ID: 193805 [No Abstract] [Full Text] [Related]
25. Role of the essential thiol groups of yeast alcohol dehydrogenase. Dickinson FM Biochem J; 1972 Jan; 126(1):133-8. PubMed ID: 4342383 [TBL] [Abstract][Full Text] [Related]
26. Studies on the active-site sulfhydryyl groups of yeast alcohol dehydrogenase. Twu JS; Chin CC; Wold F Biochemistry; 1973 Jul; 12(15):2856-62. PubMed ID: 4352486 [No Abstract] [Full Text] [Related]
28. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH. Takahashi K; Tomita T; Kuzuyama T; Nishiyama M Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325 [TBL] [Abstract][Full Text] [Related]
29. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases. Kovár J; Klukanová H Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255 [TBL] [Abstract][Full Text] [Related]
30. Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida. Shaw JP; Harayama S Eur J Biochem; 1990 Aug; 191(3):705-14. PubMed ID: 2202600 [TBL] [Abstract][Full Text] [Related]
31. Glycerol as an agent eliciting small conformational changes in alcohol dehydrogenase. Myers JS; Jakoby WB J Biol Chem; 1975 May; 250(10):3785-9. PubMed ID: 165183 [TBL] [Abstract][Full Text] [Related]
32. His273 of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8 is involved in the coenzyme binding. Yaoi T; Miyazaki K; Oshima T Biochem Biophys Res Commun; 1995 May; 210(3):733-7. PubMed ID: 7763246 [TBL] [Abstract][Full Text] [Related]
33. Enzymes of vitamin B6 degradation. Purification and properties of isopyridoxal dehydrogenase and 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylic-acid dehydrogenase. Lee YC; Nelson MJ; Snell EE J Biol Chem; 1986 Nov; 261(32):15106-11. PubMed ID: 3533936 [TBL] [Abstract][Full Text] [Related]
34. Estimation of rate and dissociation constants involving ternary complexes in reactions catalysed by yeast alcohol dehydrogenase. Dickinson FM; Dickenson CJ Biochem J; 1978 Jun; 171(3):629-37. PubMed ID: 208510 [TBL] [Abstract][Full Text] [Related]
36. Affinity labelling of yeast and liver alcohol dehydrogenases with the NAD analogue 4-(3-bromoacetylpyridinio)butyldiphosphoadenosine. Woenckhaus C; Jeck R; Jörnvall H Eur J Biochem; 1979 Jan; 93(1):65-90. PubMed ID: 220046 [TBL] [Abstract][Full Text] [Related]
37. The development of SS'-polymethylenebis(methanethiosulphonates) as reversible cross-linking reagents for thiol groups and their use to form stable catalytically active cross-linked dimers within glyceraldehyde 3-phosphate dehydrogenase. Bloxham DP; Sharma RP Biochem J; 1979 Aug; 181(2):355-66. PubMed ID: 227361 [TBL] [Abstract][Full Text] [Related]
39. The preparation of soluble high molecular weight NAD derivative active as a cofactor. Wykes JR; Dunnill P; Lilly MD Biochim Biophys Acta; 1972 Dec; 286(2):260-8. PubMed ID: 4144993 [No Abstract] [Full Text] [Related]
40. Yeast and horse liver alcohol dehydrogenases: potential problems in target size analysis and evidence for a monomer active unit. Suarez MD; Ferguson-Miller S Biochemistry; 1987 Jun; 26(12):3340-7. PubMed ID: 3307904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]