These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19580519)

  • 1. Parametric complexity of sequence assembly: theory and applications to next generation sequencing.
    Nagarajan N; Pop M
    J Comput Biol; 2009 Jul; 16(7):897-908. PubMed ID: 19580519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome assembly reborn: recent computational challenges.
    Pop M
    Brief Bioinform; 2009 Jul; 10(4):354-66. PubMed ID: 19482960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence assembly using next generation sequencing data--challenges and solutions.
    Chin FY; Leung HC; Yiu SM
    Sci China Life Sci; 2014 Nov; 57(11):1140-8. PubMed ID: 25326069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation sequencing technologies and fragment assembly algorithms.
    Lee H; Tang H
    Methods Mol Biol; 2012; 855():155-74. PubMed ID: 22407708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequencing and genome assembly using next-generation technologies.
    Nagarajan N; Pop M
    Methods Mol Biol; 2010; 673():1-17. PubMed ID: 20835789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Theory and Practice of Genome Sequence Assembly.
    Simpson JT; Pop M
    Annu Rev Genomics Hum Genet; 2015; 16():153-72. PubMed ID: 25939056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing de novo genome assembly: the long and short of it.
    Narzisi G; Mishra B
    PLoS One; 2011 Apr; 6(4):e19175. PubMed ID: 21559467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information-optimal genome assembly via sparse read-overlap graphs.
    Shomorony I; Kim SH; Courtade TA; Tse DN
    Bioinformatics; 2016 Sep; 32(17):i494-i502. PubMed ID: 27587667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of general algorithmic features for genome assemblers for next generation sequencers.
    Wajid B; Serpedin E
    Genomics Proteomics Bioinformatics; 2012 Apr; 10(2):58-73. PubMed ID: 22768980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data.
    Finotello F; Lavezzo E; Fontana P; Peruzzo D; Albiero A; Barzon L; Falda M; Di Camillo B; Toppo S
    Brief Bioinform; 2012 May; 13(3):269-80. PubMed ID: 22021898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple sequence assembly from reads alignable to a common reference genome.
    Peng Q; Smith AD
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1283-95. PubMed ID: 21778524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of next-generation sequencing technologies in functional genomics.
    Morozova O; Marra MA
    Genomics; 2008 Nov; 92(5):255-64. PubMed ID: 18703132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment.
    Baichoo S; Ouzounis CA
    Biosystems; 2017; 156-157():72-85. PubMed ID: 28392341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of high-throughput sequencing data.
    Mane SP; Modise T; Sobral BW
    Methods Mol Biol; 2011; 678():1-11. PubMed ID: 20931368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Block-Based Trimming for Next Generation Sequencing.
    Hedtke I; Lemnian I; Grosse I; Muller-Hannemann M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):364-376. PubMed ID: 28436887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study.
    Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A
    J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for discovering structural variation with next-generation sequencing.
    Medvedev P; Stanciu M; Brudno M
    Nat Methods; 2009 Nov; 6(11 Suppl):S13-20. PubMed ID: 19844226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo sequencing of plant genomes using second-generation technologies.
    Imelfort M; Edwards D
    Brief Bioinform; 2009 Nov; 10(6):609-18. PubMed ID: 19933209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.