BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19580682)

  • 1. Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections.
    Feller MB
    Neural Dev; 2009 Jul; 4():24. PubMed ID: 19580682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections.
    Chalupa LM
    Neural Dev; 2009 Jul; 4():25. PubMed ID: 19580684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret.
    Cook PM; Prusky G; Ramoa AS
    Vis Neurosci; 1999; 16(3):491-501. PubMed ID: 10349970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields.
    Davis ZW; Chapman B; Cheng HJ
    J Neurosci; 2015 Oct; 35(43):14612-23. PubMed ID: 26511250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections.
    Torborg CL; Hansen KA; Feller MB
    Nat Neurosci; 2005 Jan; 8(1):72-8. PubMed ID: 15608630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections.
    Chalupa LM
    Brain Res Rev; 2007 Oct; 55(2):228-36. PubMed ID: 17433447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence.
    Salari V; Scholkmann F; Vimal RLP; Császár N; Aslani M; Bókkon I
    Prog Retin Eye Res; 2017 Sep; 60():101-119. PubMed ID: 28729002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways.
    Warland DK; Huberman AD; Chalupa LM
    J Neurosci; 2006 May; 26(19):5190-7. PubMed ID: 16687510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Augmentation of Retinogeniculate Communication during Thalamic Burst Mode.
    Alitto H; Rathbun DL; Vandeleest JJ; Alexander PC; Usrey WM
    J Neurosci; 2019 Jul; 39(29):5697-5710. PubMed ID: 31109958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents.
    Renna JM; Weng S; Berson DM
    Nat Neurosci; 2011 Jun; 14(7):827-9. PubMed ID: 21642974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retinal waves.
    Elliott T; Shadbolt NR
    J Neurosci; 1999 Sep; 19(18):7951-70. PubMed ID: 10479696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional consequences of neuronal divergence within the retinogeniculate pathway.
    Yeh CI; Stoelzel CR; Weng C; Alonso JM
    J Neurophysiol; 2009 Apr; 101(4):2166-85. PubMed ID: 19176606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity dependent mechanisms of visual map formation--from retinal waves to molecular regulators.
    Assali A; Gaspar P; Rebsam A
    Semin Cell Dev Biol; 2014 Nov; 35():136-46. PubMed ID: 25152335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent.
    Rebsam A; Petros TJ; Mason CA
    J Neurosci; 2009 Nov; 29(47):14855-63. PubMed ID: 19940181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of retinal waves and synaptic normalization in retinogeniculate development.
    Eglen SJ
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1382):497-506. PubMed ID: 10212494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina.
    Blankenship AG; Hamby AM; Firl A; Vyas S; Maxeiner S; Willecke K; Feller MB
    J Neurosci; 2011 Jul; 31(27):9998-10008. PubMed ID: 21734291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of order in visual system development.
    Shatz CJ
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):602-8. PubMed ID: 8570602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thalamic relay of spontaneous retinal activity prior to vision.
    Mooney R; Penn AA; Gallego R; Shatz CJ
    Neuron; 1996 Nov; 17(5):863-74. PubMed ID: 8938119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development.
    Penn AA; Shatz CJ
    Pediatr Res; 1999 Apr; 45(4 Pt 1):447-58. PubMed ID: 10203134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.