These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 19580752)
1. Direct visualization of the lateral structure of porcine brain cerebrosides/POPC mixtures in presence and absence of cholesterol. Fidorra M; Heimburg T; Bagatolli LA Biophys J; 2009 Jul; 97(1):142-54. PubMed ID: 19580752 [TBL] [Abstract][Full Text] [Related]
2. Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Fidorra M; Duelund L; Leidy C; Simonsen AC; Bagatolli LA Biophys J; 2006 Jun; 90(12):4437-51. PubMed ID: 16565051 [TBL] [Abstract][Full Text] [Related]
3. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes. Tsai WC; Feigenson GW Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):478-485. PubMed ID: 30529459 [TBL] [Abstract][Full Text] [Related]
4. Direct visualization of the lateral structure of giant vesicles composed of pseudo-binary mixtures of sulfatide, asialo-GM1 and GM1 with POPC. Rodi PM; Maggio B; Bagatolli LA Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):544-555. PubMed ID: 29106974 [TBL] [Abstract][Full Text] [Related]
5. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. Nicolini C; Kraineva J; Khurana M; Periasamy N; Funari SS; Winter R Biochim Biophys Acta; 2006 Feb; 1758(2):248-58. PubMed ID: 16529710 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Bunge A; Müller P; Stöckl M; Herrmann A; Huster D Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660 [TBL] [Abstract][Full Text] [Related]
7. Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC. Pokorny A; Yandek LE; Elegbede AI; Hinderliter A; Almeida PF Biophys J; 2006 Sep; 91(6):2184-97. PubMed ID: 16798807 [TBL] [Abstract][Full Text] [Related]
9. Lateral Segregation of Palmitoyl Ceramide-1-Phosphate in Simple and Complex Bilayers. Al Sazzad MA; Yasuda T; Nyholm TKM; Slotte JP Biophys J; 2019 Jul; 117(1):36-45. PubMed ID: 31133285 [TBL] [Abstract][Full Text] [Related]
10. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
11. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. Bartels T; Lankalapalli RS; Bittman R; Beyer K; Brown MF J Am Chem Soc; 2008 Nov; 130(44):14521-32. PubMed ID: 18839945 [TBL] [Abstract][Full Text] [Related]
12. Mixing brain cerebrosides with brain ceramides, cholesterol and phospholipids. González-Ramírez EJ; Goñi FM; Alonso A Sci Rep; 2019 Sep; 9(1):13326. PubMed ID: 31527655 [TBL] [Abstract][Full Text] [Related]
13. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. Sot J; Ibarguren M; Busto JV; Montes LR; Goñi FM; Alonso A FEBS Lett; 2008 Sep; 582(21-22):3230-6. PubMed ID: 18755187 [TBL] [Abstract][Full Text] [Related]
14. Effects of cholesterol and saturated sphingolipids on acyl chain order in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers--a comparative study with phase-selective fluorophores. Engberg O; Nurmi H; Nyholm TK; Slotte JP Langmuir; 2015 Apr; 31(14):4255-63. PubMed ID: 25806833 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved fluorescence and fourier transform infrared spectroscopic investigations of lateral packing defects and superlattice domains in compositionally uniform cholesterol/phosphatidylcholine bilayers. Cannon B; Heath G; Huang J; Somerharju P; Virtanen JA; Cheng KH Biophys J; 2003 Jun; 84(6):3777-91. PubMed ID: 12770884 [TBL] [Abstract][Full Text] [Related]
16. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Wenk MR; Alt T; Seelig A; Seelig J Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676 [TBL] [Abstract][Full Text] [Related]
17. Characterization of conformational states of POPC and DPPC Zaytseva YV; Zaytseva IV; Surovtsev NV Chem Phys Lipids; 2023 Oct; 256():105337. PubMed ID: 37579987 [TBL] [Abstract][Full Text] [Related]
18. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Pathak P; London E Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740 [TBL] [Abstract][Full Text] [Related]
19. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462 [TBL] [Abstract][Full Text] [Related]