These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 19580752)
21. Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures. Ali MR; Cheng KH; Huang J Biochemistry; 2006 Oct; 45(41):12629-38. PubMed ID: 17029417 [TBL] [Abstract][Full Text] [Related]
22. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
23. Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes. Ruocco MJ; Shipley GG Biophys J; 1984 Dec; 46(6):695-707. PubMed ID: 6518252 [TBL] [Abstract][Full Text] [Related]
24. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Juhasz J; Davis JH; Sharom FJ Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452 [TBL] [Abstract][Full Text] [Related]
25. Edelfosine is incorporated into rafts and alters their organization. Ausili A; Torrecillas A; Aranda FJ; Mollinedo F; Gajate C; Corbalán-García S; de Godos A; Gómez-Fernández JC J Phys Chem B; 2008 Sep; 112(37):11643-54. PubMed ID: 18712919 [TBL] [Abstract][Full Text] [Related]
26. The interactions of 1-palmitoyl-2-oleylphosphatidylcholine and bovine brain cerebroside. Curatolo W Biochim Biophys Acta; 1986 Oct; 861(2):373-6. PubMed ID: 3756164 [TBL] [Abstract][Full Text] [Related]
27. Temperature-pressure phase diagram of a heterogeneous anionic model biomembrane system: results from a combined calorimetry, spectroscopy and microscopy study. Kapoor S; Werkmüller A; Denter C; Zhai Y; Markgraf J; Weise K; Opitz N; Winter R Biochim Biophys Acta; 2011 Apr; 1808(4):1187-95. PubMed ID: 21262194 [TBL] [Abstract][Full Text] [Related]
28. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205 [TBL] [Abstract][Full Text] [Related]
30. Characterization of phase separation phenomena in hybrid lipid/block copolymer/cholesterol bilayers using laurdan fluorescence with log-normal multipeak analysis. Hamada N; Longo ML Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183887. PubMed ID: 35150645 [TBL] [Abstract][Full Text] [Related]
31. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. Ferreira TM; Coreta-Gomes F; Ollila OH; Moreno MJ; Vaz WL; Topgaard D Phys Chem Chem Phys; 2013 Feb; 15(6):1976-89. PubMed ID: 23258433 [TBL] [Abstract][Full Text] [Related]
32. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. McMullen TP; Lewis RN; McElhaney RN Biophys J; 1994 Mar; 66(3 Pt 1):741-52. PubMed ID: 8011906 [TBL] [Abstract][Full Text] [Related]
33. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. de Almeida RF; Fedorov A; Prieto M Biophys J; 2003 Oct; 85(4):2406-16. PubMed ID: 14507704 [TBL] [Abstract][Full Text] [Related]
34. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Curatolo W; Sears B; Neuringer LJ Biochim Biophys Acta; 1985 Jul; 817(2):261-70. PubMed ID: 4016105 [TBL] [Abstract][Full Text] [Related]
35. A molecular dynamics study proposing the existence of statistical structural heterogeneity due to chain orientation in the POPC-cholesterol bilayer. Favela-Rosales F; Galván-Hernández A; Hernández-Cobos J; Kobayashi N; Carbajal-Tinoco MD; Nakabayashi S; Ortega-Blake I Biophys Chem; 2020 Feb; 257():106275. PubMed ID: 31790909 [TBL] [Abstract][Full Text] [Related]
36. Melatonin Alters Fluid Phase Coexistence in POPC/DPPC/Cholesterol Membranes. Mei N; Robinson M; Davis JH; Leonenko Z Biophys J; 2020 Dec; 119(12):2391-2402. PubMed ID: 33157120 [TBL] [Abstract][Full Text] [Related]
37. Lateral organization of GM1 in phase-separated monolayers visualized by scanning force microscopy. Menke M; Künneke S; Janshoff A Eur Biophys J; 2002 Jul; 31(4):317-22. PubMed ID: 12122478 [TBL] [Abstract][Full Text] [Related]
38. Effect of ectoine, hydroxyectoine and β-hydroxybutyrate on the temperature and pressure stability of phospholipid bilayer membranes of different complexity. Herzog M; Dwivedi M; Kumar Harishchandra R; Bilstein A; Galla HJ; Winter R Colloids Surf B Biointerfaces; 2019 Jun; 178():404-411. PubMed ID: 30903979 [TBL] [Abstract][Full Text] [Related]
39. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol. Lin WC; Blanchette CD; Longo ML Biophys J; 2007 Apr; 92(8):2831-41. PubMed ID: 17237202 [TBL] [Abstract][Full Text] [Related]