These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 19580752)
41. Cationic amphiphiles and the solubilization of cholesterol crystallites in membrane bilayers. Benatti CR; Lamy MT; Epand RM Biochim Biophys Acta; 2008 Apr; 1778(4):844-53. PubMed ID: 18201547 [TBL] [Abstract][Full Text] [Related]
42. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990 [TBL] [Abstract][Full Text] [Related]
43. Imaging cerebroside-rich domains for phase and shape characterization in binary and ternary mixtures. Longo ML; Blanchette CD Biochim Biophys Acta; 2010 Jul; 1798(7):1357-67. PubMed ID: 19945421 [TBL] [Abstract][Full Text] [Related]
44. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol. González-Ramírez EJ; Artetxe I; García-Arribas AB; Goñi FM; Alonso A Langmuir; 2019 Apr; 35(15):5305-5315. PubMed ID: 30924341 [TBL] [Abstract][Full Text] [Related]
45. Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol. Mattei B; França AD; Riske KA Langmuir; 2015; 31(1):378-86. PubMed ID: 25474726 [TBL] [Abstract][Full Text] [Related]
46. Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles. Haluska CK; Schröder AP; Didier P; Heissler D; Duportail G; Mély Y; Marques CM Biophys J; 2008 Dec; 95(12):5737-47. PubMed ID: 18790852 [TBL] [Abstract][Full Text] [Related]
50. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051 [TBL] [Abstract][Full Text] [Related]
51. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biophys J; 2000 Oct; 79(4):2056-65. PubMed ID: 11023909 [TBL] [Abstract][Full Text] [Related]
52. Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers. Busto JV; Fanani ML; De Tullio L; Sot J; Maggio B; Goñi FM; Alonso A Biophys J; 2009 Nov; 97(10):2717-26. PubMed ID: 19917225 [TBL] [Abstract][Full Text] [Related]
53. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Veiga MP; Arrondo JL; Goñi FM; Alonso A; Marsh D Biochemistry; 2001 Feb; 40(8):2614-22. PubMed ID: 11327885 [TBL] [Abstract][Full Text] [Related]
54. Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Mannock DA; Lewis RN; McElhaney RN Biophys J; 2006 Nov; 91(9):3327-40. PubMed ID: 16905603 [TBL] [Abstract][Full Text] [Related]
56. Gradual change or phase transition: characterizing fluid lipid-cholesterol membranes on the basis of thermal volume changes. Heerklotz H; Tsamaloukas A Biophys J; 2006 Jul; 91(2):600-7. PubMed ID: 16632513 [TBL] [Abstract][Full Text] [Related]
57. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Bernsdorff C; Wolf A; Winter R; Gratton E Biophys J; 1997 Mar; 72(3):1264-77. PubMed ID: 9138572 [TBL] [Abstract][Full Text] [Related]
58. Bilayer Interactions among Unsaturated Phospholipids, Sterols, and Ceramide. Slotte JP; Yasuda T; Engberg O; Al Sazzad MA; Hautala V; Nyholm TKM; Murata M Biophys J; 2017 Apr; 112(8):1673-1681. PubMed ID: 28445758 [TBL] [Abstract][Full Text] [Related]
59. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Crane JM; Tamm LK Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412 [TBL] [Abstract][Full Text] [Related]
60. Low-frequency ultrasound-induced transport across non-raft-forming ternary lipid bilayers. Small EF; Dan NR; Wrenn SP Langmuir; 2012 Oct; 28(40):14364-72. PubMed ID: 22974532 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]