These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19580768)

  • 21. Symmetry-breaking transitions in the early steps of protein self-assembly.
    La Rosa C; Condorelli M; Compagnini G; Lolicato F; Milardi D; Do TN; Karttunen M; Pannuzzo M; Ramamoorthy A; Fraternali F; Collu F; Rezaei H; Strodel B; Raudino A
    Eur Biophys J; 2020 Mar; 49(2):175-191. PubMed ID: 32123956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide.
    Sun Y; Kakinen A; Xing Y; Pilkington EH; Davis TP; Ke PC; Ding F
    Biochim Biophys Acta Mol Basis Dis; 2019 Feb; 1865(2):434-444. PubMed ID: 30502402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamics and stability of a beta-sheet complex: molecular dynamics simulations on simplified off-lattice protein models.
    Jang H; Hall CK; Zhou Y
    Protein Sci; 2004 Jan; 13(1):40-53. PubMed ID: 14691220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free Energy Landscape for Alpha-Helix to Beta-Sheet Interconversion in Small Amyloid Forming Peptide under Nanoconfinement.
    Mudedla SK; Murugan NA; Agren H
    J Phys Chem B; 2018 Oct; 122(42):9654-9664. PubMed ID: 30253649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Folding thermodynamics of three beta-sheet peptides: a model study.
    Irbäck A; Sjunnesson F
    Proteins; 2004 Jul; 56(1):110-6. PubMed ID: 15162491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides.
    Vitalis A; Pappu RV
    Biophys Chem; 2011 Nov; 159(1):14-23. PubMed ID: 21530061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.
    Zanuy D; Gunasekaran K; Lesk AM; Nussinov R
    J Mol Biol; 2006 Apr; 358(1):330-45. PubMed ID: 16503338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Side-chain interactions determine amyloid formation by model polyglutamine peptides in molecular dynamics simulations.
    Marchut AJ; Hall CK
    Biophys J; 2006 Jun; 90(12):4574-84. PubMed ID: 16565057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico assembly of Alzheimer's Abeta16-22 peptide into beta-sheets.
    Santini S; Mousseau N; Derreumaux P
    J Am Chem Soc; 2004 Sep; 126(37):11509-16. PubMed ID: 15366896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Aggregation Free Energy Landscapes of Polyglutamine Repeats.
    Chen M; Tsai M; Zheng W; Wolynes PG
    J Am Chem Soc; 2016 Nov; 138(46):15197-15203. PubMed ID: 27786478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation.
    Hamley IW; Nutt DR; Brown GD; Miravet JF; Escuder B; Rodríguez-Llansola F
    J Phys Chem B; 2010 Jan; 114(2):940-51. PubMed ID: 20039666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution.
    Fluitt AM; de Pablo JJ
    Biophys J; 2015 Sep; 109(5):1009-18. PubMed ID: 26331258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of hydrophobic macromolecular crowders on amyloid β (16-22) aggregation.
    Latshaw DC; Hall CK
    Biophys J; 2015 Jul; 109(1):124-34. PubMed ID: 26153709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of beta-sheet propensity on peptide aggregation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Apr; 130(14):145103. PubMed ID: 19368476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural determinants of polyglutamine protofibrils and crystallites.
    Man VH; Roland C; Sagui C
    ACS Chem Neurosci; 2015 Apr; 6(4):632-45. PubMed ID: 25604626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations.
    Laghaei R; Mousseau N
    J Chem Phys; 2010 Apr; 132(16):165102. PubMed ID: 20441310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein aggregation: kinetics versus thermodynamics.
    Ricchiuto P; Brukhno AV; Auer S
    J Phys Chem B; 2012 May; 116(18):5384-90. PubMed ID: 22512540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein folding pathways from replica exchange simulations and a kinetic network model.
    Andrec M; Felts AK; Gallicchio E; Levy RM
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6801-6. PubMed ID: 15800044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations.
    Nguyen HD; Hall CK
    J Am Chem Soc; 2006 Feb; 128(6):1890-901. PubMed ID: 16464090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconsidering the mechanism of polyglutamine peptide aggregation.
    Lee CC; Walters RH; Murphy RM
    Biochemistry; 2007 Nov; 46(44):12810-20. PubMed ID: 17929830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.