These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 19580772)

  • 1. Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy.
    Michelman-Ribeiro A; Mazza D; Rosales T; Stasevich TJ; Boukari H; Rishi V; Vinson C; Knutson JR; McNally JG
    Biophys J; 2009 Jul; 97(1):337-46. PubMed ID: 19580772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates.
    Stasevich TJ; Mueller F; Michelman-Ribeiro A; Rosales T; Knutson JR; McNally JG
    Biophys J; 2010 Nov; 99(9):3093-101. PubMed ID: 21044608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion and binding analyzed with combined point FRAP and FCS.
    Im KB; Schmidt U; Kang MS; Lee JY; Bestvater F; Wachsmuth M
    Cytometry A; 2013 Sep; 83(9):876-89. PubMed ID: 23847177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrepancy between fluorescence correlation spectroscopy and fluorescence recovery after photobleaching diffusion measurements of G-protein-coupled receptors.
    Calizo RC; Scarlata S
    Anal Biochem; 2013 Sep; 440(1):40-8. PubMed ID: 23748145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy.
    Papadopoulos DK; Krmpot AJ; Nikolić SN; Krautz R; Terenius L; Tomancak P; Rigler R; Gehring WJ; Vukojević V
    Mech Dev; 2015 Nov; 138 Pt 2():218-225. PubMed ID: 26428533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EGF Receptor Stalls upon Activation as Evidenced by Complementary Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching Measurements.
    Vámosi G; Friedländer-Brock E; Ibrahim SM; Brock R; Szöllősi J; Vereb G
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31323980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Equivalence of FCS and FRAP: Simultaneous Lipid Membrane Measurements.
    Macháň R; Foo YH; Wohland T
    Biophys J; 2016 Jul; 111(1):152-61. PubMed ID: 27410743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A benchmark for chromatin binding measurements in live cells.
    Mazza D; Abernathy A; Golob N; Morisaki T; McNally JG
    Nucleic Acids Res; 2012 Aug; 40(15):e119. PubMed ID: 22844090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy.
    Reitan NK; Juthajan A; Lindmo T; de Lange Davies C
    J Biomed Opt; 2008; 13(5):054040. PubMed ID: 19021420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy.
    Günther JP; Börsch M; Fischer P
    Acc Chem Res; 2018 Sep; 51(9):1911-1920. PubMed ID: 30160941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope.
    Sisan DR; Arevalo R; Graves C; McAllister R; Urbach JS
    Biophys J; 2006 Dec; 91(11):4241-52. PubMed ID: 16950838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion measurements inside biofilms by image-based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope.
    Waharte F; Steenkeste K; Briandet R; Fontaine-Aupart MP
    Appl Environ Microbiol; 2010 Sep; 76(17):5860-9. PubMed ID: 20639359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy.
    Bacia K; Schwille P
    Methods; 2003 Jan; 29(1):74-85. PubMed ID: 12543073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photobleaching, mobility, and compartmentalisation: inferences in fluorescence correlation spectroscopy.
    Delon A; Usson Y; Derouard J; Biben T; Souchier C
    J Fluoresc; 2004 May; 14(3):255-67. PubMed ID: 15615207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.
    Wachsmuth M; Weidemann T; Müller G; Hoffmann-Rohrer UW; Knoch TA; Waldeck W; Langowski J
    Biophys J; 2003 May; 84(5):3353-63. PubMed ID: 12719264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the full length and mutated heat shock factor 1 in human cells.
    Herbomel G; Kloster-Landsberg M; Folco EG; Col E; Usson Y; Vourc'h C; Delon A; Souchier C
    PLoS One; 2013; 8(7):e67566. PubMed ID: 23861773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning fluorescence correlation spectroscopy in model membrane systems.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2013; 1033():185-205. PubMed ID: 23996179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photobleaching in two-photon scanning fluorescence correlation spectroscopy.
    Petrásek Z; Schwille P
    Chemphyschem; 2008 Jan; 9(1):147-58. PubMed ID: 18072191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.
    Wawrezinieck L; Rigneault H; Marguet D; Lenne PF
    Biophys J; 2005 Dec; 89(6):4029-42. PubMed ID: 16199500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.