These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 19581304)
1. Identification of residues in the drug translocation pathway of the human multidrug resistance P-glycoprotein by arginine mutagenesis. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2009 Sep; 284(36):24074-87. PubMed ID: 19581304 [TBL] [Abstract][Full Text] [Related]
2. Arginines in the first transmembrane segment promote maturation of a P-glycoprotein processing mutant by hydrogen bond interactions with tyrosines in transmembrane segment 11. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2008 Sep; 283(36):24860-70. PubMed ID: 18596043 [TBL] [Abstract][Full Text] [Related]
3. Insertion of an arginine residue into the transmembrane segments corrects protein misfolding. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2006 Oct; 281(40):29436-40. PubMed ID: 16926162 [TBL] [Abstract][Full Text] [Related]
4. Suppressor mutations in the transmembrane segments of P-glycoprotein promote maturation of processing mutants and disrupt a subset of drug-binding sites. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2007 Nov; 282(44):32043-52. PubMed ID: 17848563 [TBL] [Abstract][Full Text] [Related]
5. Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. Loo TW; Clarke DM J Biol Chem; 2001 May; 276(18):14972-9. PubMed ID: 11279063 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Oct; 278(41):39706-10. PubMed ID: 12909621 [TBL] [Abstract][Full Text] [Related]
7. Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. Loo TW; Clarke DM J Biol Chem; 2002 Nov; 277(46):44332-8. PubMed ID: 12223492 [TBL] [Abstract][Full Text] [Related]
8. Identification of residues in the drug-binding domain of human P-glycoprotein. Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane. Loo TW; Clarke DM J Biol Chem; 1999 Dec; 274(50):35388-92. PubMed ID: 10585407 [TBL] [Abstract][Full Text] [Related]
9. Disulfide cross-linking analysis shows that transmembrane segments 5 and 8 of human P-glycoprotein are close together on the cytoplasmic side of the membrane. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2004 Feb; 279(9):7692-7. PubMed ID: 14670948 [TBL] [Abstract][Full Text] [Related]
10. Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Apr; 278(16):13603-6. PubMed ID: 12609990 [TBL] [Abstract][Full Text] [Related]
11. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2002 Aug; 277(31):27585-8. PubMed ID: 12070134 [TBL] [Abstract][Full Text] [Related]
12. Methanethiosulfonate derivatives of rhodamine and verapamil activate human P-glycoprotein at different sites. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Dec; 278(50):50136-41. PubMed ID: 14522974 [TBL] [Abstract][Full Text] [Related]
13. Cross-linking of human multidrug resistance P-glycoprotein by the substrate, tris-(2-maleimidoethyl)amine, is altered by ATP hydrolysis. Evidence for rotation of a transmembrane helix. Loo TW; Clarke DM J Biol Chem; 2001 Aug; 276(34):31800-5. PubMed ID: 11429407 [TBL] [Abstract][Full Text] [Related]
14. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein. Loo TW; Clarke DM J Biol Chem; 2015 Dec; 290(49):29389-401. PubMed ID: 26507655 [TBL] [Abstract][Full Text] [Related]
15. Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site. Loo TW; Clarke DM Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3511-6. PubMed ID: 11891276 [TBL] [Abstract][Full Text] [Related]
16. Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. Loo TW; Clarke DM J Biol Chem; 2000 Dec; 275(50):39272-8. PubMed ID: 11013259 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates. Loo TW; Clarke DM J Biol Chem; 1996 Nov; 271(44):27482-7. PubMed ID: 8910331 [TBL] [Abstract][Full Text] [Related]
18. Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein. Sajid A; Lusvarghi S; Murakami M; Chufan EE; Abel B; Gottesman MM; Durell SR; Ambudkar SV Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29609-29617. PubMed ID: 33168729 [TBL] [Abstract][Full Text] [Related]
19. The drug-binding pocket of the human multidrug resistance P-glycoprotein is accessible to the aqueous medium. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2004 Sep; 43(38):12081-9. PubMed ID: 15379547 [TBL] [Abstract][Full Text] [Related]
20. Identification of residues in the drug-binding site of human P-glycoprotein using a thiol-reactive substrate. Loo TW; Clarke DM J Biol Chem; 1997 Dec; 272(51):31945-8. PubMed ID: 9405384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]