These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19581342)

  • 1. A continuum model for the development of tissue-engineered cartilage around a chondrocyte.
    Trewenack AJ; Please CP; Landman KA
    Math Med Biol; 2009 Sep; 26(3):241-62. PubMed ID: 19581342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress of research in osteoarthritis. Tissue engineering therapy for osteoarthritis].
    Hattori K; Ohgushi H
    Clin Calcium; 2009 Nov; 19(11):1621-8. PubMed ID: 19880995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering.
    Chung CA; Yang CW; Chen CW
    Biotechnol Bioeng; 2006 Aug; 94(6):1138-46. PubMed ID: 16586509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Articular cartilage and osteoarthritis.
    Buckwalter JA; Mankin HJ; Grodzinsky AJ
    Instr Course Lect; 2005; 54():465-80. PubMed ID: 15952258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].
    Stoltz JF; Netter P; Huselstein C; de Isla N; Wei Yang J; Muller S
    Bull Acad Natl Med; 2005 Nov; 189(8):1803-14; discussion 1814-6. PubMed ID: 16737104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reaction-diffusion model to predict the influence of neo-matrix on the subsequent development of tissue-engineered cartilage.
    van Donkelaar CC; Chao G; Bader DL; Oomens CW
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):425-32. PubMed ID: 21516527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An innovative lattice Boltzmann model for simulating Michaelis-Menten-based diffusion-advection kinetics and its application within a cartilage cell bioreactor.
    Moaty Sayed AA; Hussein MA; Becker T
    Biomech Model Mechanobiol; 2010 Apr; 9(2):141-51. PubMed ID: 19633990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equal cartilage repair response between autologous chondrocytes in a collagen scaffold and minced cartilage under a collagen scaffold: an in vivo study in goats.
    Lind M; Larsen A
    Connect Tissue Res; 2008; 49(6):437-42. PubMed ID: 19085244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrocyte death in mechanically injured articular cartilage--the influence of extracellular calcium.
    Amin AK; Huntley JS; Bush PG; Simpson AH; Hall AC
    J Orthop Res; 2009 Jun; 27(6):778-84. PubMed ID: 19030171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Setton LA; Guilak F
    Acta Biomater; 2005 May; 1(3):317-25. PubMed ID: 16701810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrogenic properties of primary human chondrocytes culture in hyaluronic acid treated gelatin scaffold.
    Pruksakorn D; Khamwaen N; Pothacharoen P; Arpornchayanon O; Rojanasthien S; Kongtawelert P
    J Med Assoc Thai; 2009 Apr; 92(4):483-90. PubMed ID: 19374298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current perspectives on cartilage and chondrocyte mechanobiology.
    Lammi MJ
    Biorheology; 2004; 41(3-4):593-6. PubMed ID: 15299289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
    Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A
    Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully coupled poroelastic reactive-transport model of cartilage.
    Zhang L; Gardiner BS; Smith DW; Pivonka P; Grodzinsky A
    Mol Cell Biomech; 2008 Jun; 5(2):133-53. PubMed ID: 18589501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Progress in the study of articular cartilage tissue engineering seeding cells].
    Zhang S; Zhu L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Dec; 22(12):1505-7. PubMed ID: 19137900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical signals for chondrocytes in cartilage.
    Lai WM; Sun DD; Ateshian GA; Guo XE; Mow VC
    Biorheology; 2002; 39(1-2):39-45. PubMed ID: 12082265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of depth-dependent properties in tissue-engineered cartilage with a semi-permeable membrane and perfusion: a continuum model of matrix metabolism and transport.
    Klein TJ; Sah RL
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):21-32. PubMed ID: 16715317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular network of cartilage homeostasis and osteoarthritis.
    Hashimoto M; Nakasa T; Hikata T; Asahara H
    Med Res Rev; 2008 May; 28(3):464-81. PubMed ID: 17880012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering.
    van der Kraan PM; Buma P; van Kuppevelt T; van den Berg WB
    Osteoarthritis Cartilage; 2002 Aug; 10(8):631-7. PubMed ID: 12479385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.