These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Denger K; Ruff J; Schleheck D; Cook AM Microbiology (Reading); 2004 Jun; 150(Pt 6):1859-1867. PubMed ID: 15184572 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of chiral sulfonate compound 2,3-dihydroxypropane-1-sulfonate (DHPS) by Roseobacter bacteria in marine environment. Chen X; Liu L; Gao X; Dai X; Han Y; Chen Q; Tang K Environ Int; 2021 Dec; 157():106829. PubMed ID: 34425483 [TBL] [Abstract][Full Text] [Related]
11. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1. Denger K; Smits THM; Cook AM Microbiology (Reading); 2006 Nov; 152(Pt 11):3197-3206. PubMed ID: 17074891 [TBL] [Abstract][Full Text] [Related]
12. Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. Weinitschke S; Hollemeyer K; Kusian B; Bowien B; Smits TH; Cook AM J Biol Chem; 2010 Nov; 285(46):35249-54. PubMed ID: 20693281 [TBL] [Abstract][Full Text] [Related]
13. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM. Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368 [TBL] [Abstract][Full Text] [Related]
14. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Ruff J; Denger K; Cook AM Biochem J; 2003 Jan; 369(Pt 2):275-85. PubMed ID: 12358600 [TBL] [Abstract][Full Text] [Related]
15. Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDS1. Denger K; Cook AM Arch Microbiol; 2001 Jul; 176(1-2):89-95. PubMed ID: 11479707 [TBL] [Abstract][Full Text] [Related]
16. A Pathway for Isethionate Dissimilation in Bacillus krulwichiae. Tong Y; Wei Y; Hu Y; Ang EL; Zhao H; Zhang Y Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126948 [TBL] [Abstract][Full Text] [Related]
18. Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Graham DE; Taylor SM; Wolf RZ; Namboori SC Biochem J; 2009 Dec; 424(3):467-78. PubMed ID: 19761441 [TBL] [Abstract][Full Text] [Related]
19. A Variant of the Sulfoglycolytic Transketolase Pathway for the Degradation of Sulfoquinovose into Sulfoacetate. Chu R; Wei Y; Liu J; Li B; Zhang J; Zhou Y; Du Y; Zhang Y Appl Environ Microbiol; 2023 Jul; 89(7):e0061723. PubMed ID: 37404184 [TBL] [Abstract][Full Text] [Related]
20. The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Weinitschke S; Denger K; Cook AM; Smits THM Microbiology (Reading); 2007 Sep; 153(Pt 9):3055-3060. PubMed ID: 17768248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]