These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19581393)

  • 1. Further characterization of the epa gene cluster and Epa polysaccharides of Enterococcus faecalis.
    Teng F; Singh KV; Bourgogne A; Zeng J; Murray BE
    Infect Immun; 2009 Sep; 77(9):3759-67. PubMed ID: 19581393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the enterococcal polysaccharide antigen gene (epa) cluster is widespread in Enterococcus faecalis and influences resistance to phagocytic killing of E. faecalis.
    Teng F; Jacques-Palaz KD; Weinstock GM; Murray BE
    Infect Immun; 2002 Apr; 70(4):2010-5. PubMed ID: 11895965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a gene cluster of Enterococcus faecalis involved in polysaccharide biosynthesis.
    Xu Y; Singh KV; Qin X; Murray BE; Weinstock GM
    Infect Immun; 2000 Feb; 68(2):815-23. PubMed ID: 10639451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of the epa locus of Enterococcus faecalis OG1RF in a mouse model of ascending urinary tract infection.
    Singh KV; Lewis RJ; Murray BE
    J Infect Dis; 2009 Aug; 200(3):417-20. PubMed ID: 19545208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the
    Rouchon CN; Weinstein AJ; Hutchison CA; Zubair-Nizami ZB; Kohler PL; Frank KL
    J Bacteriol; 2022 Oct; 204(10):e0024722. PubMed ID: 36094307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF.
    Bourgogne A; Garsin DA; Qin X; Singh KV; Sillanpaa J; Yerrapragada S; Ding Y; Dugan-Rocha S; Buhay C; Shen H; Chen G; Williams G; Muzny D; Maadani A; Fox KA; Gioia J; Chen L; Shang Y; Arias CA; Nallapareddy SR; Zhao M; Prakash VP; Chowdhury S; Jiang H; Gibbs RA; Murray BE; Highlander SK; Weinstock GM
    Genome Biol; 2008; 9(7):R110. PubMed ID: 18611278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of disruption of a gene encoding an autolysin of Enterococcus faecalis OG1RF.
    Qin X; Singh KV; Xu Y; Weinstock GM; Murray BE
    Antimicrob Agents Chemother; 1998 Nov; 42(11):2883-8. PubMed ID: 9797220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of Enterococcus faecalis strains across a monolayer of polarized human enterocyte-like T84 cells.
    Zeng J; Teng F; Weinstock GM; Murray BE
    J Clin Microbiol; 2004 Mar; 42(3):1149-54. PubMed ID: 15004067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cluster of genes involved in polysaccharide biosynthesis from Enterococcus faecalis OG1RF.
    Xu Y; Murray BE; Weinstock GM
    Infect Immun; 1998 Sep; 66(9):4313-23. PubMed ID: 9712783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative contributions of Enterococcus faecalis OG1RF sortase-encoding genes, srtA and bps (srtC), to biofilm formation and a murine model of urinary tract infection.
    Kemp KD; Singh KV; Nallapareddy SR; Murray BE
    Infect Immun; 2007 Nov; 75(11):5399-404. PubMed ID: 17785477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Biofilm Assays Using Enterococcus faecalis OG1RF Identify New Determinants of Biofilm Formation.
    Willett JLE; Dale JL; Kwiatkowski LM; Powers JL; Korir ML; Kohli R; Barnes AMT; Dunny GM
    mBio; 2021 Jun; 12(3):e0101121. PubMed ID: 34126766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of
    Korir ML; Dale JL; Dunny GM
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30910809
    [No Abstract]   [Full Text] [Related]  

  • 13. Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection.
    Singh KV; Nallapareddy SR; Murray BE
    J Infect Dis; 2007 Jun; 195(11):1671-7. PubMed ID: 17471437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of GalU Leads to a Cell Wall-Associated Polysaccharide Defect That Reduces the Susceptibility of Enterococcus faecalis to Bacteriolytic Agents.
    Kurushima J; Tomita H
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33483312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and functional analysis of NaCl-induced stress in Enterococcus faecalis.
    Solheim M; La Rosa SL; Mathisen T; Snipen LG; Nes IF; Brede DA
    PLoS One; 2014; 9(4):e94571. PubMed ID: 24755907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence.
    Qin X; Singh KV; Weinstock GM; Murray BE
    Infect Immun; 2000 May; 68(5):2579-86. PubMed ID: 10768947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of gls24 in virulence and stress response of Enterococcus faecalis and use of the Gls24 protein as a possible immunotherapy target.
    Teng F; Nannini EC; Murray BE
    J Infect Dis; 2005 Feb; 191(3):472-80. PubMed ID: 15633107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone.
    Guerardel Y; Sadovskaya I; Maes E; Furlan S; Chapot-Chartier MP; Mesnage S; Rigottier-Gois L; Serror P
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitness Restoration of a Genetically Tractable Enterococcus faecalis V583 Derivative To Study Decoration-Related Phenotypes of the Enterococcal Polysaccharide Antigen.
    Furlan S; Matos RC; Kennedy SP; Doublet B; Serror P; Rigottier-Gois L
    mSphere; 2019 Jul; 4(4):. PubMed ID: 31292230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system.
    Smith RE; Salamaga B; Szkuta P; Hajdamowicz N; Prajsnar TK; Bulmer GS; Fontaine T; Kołodziejczyk J; Herry JM; Hounslow AM; Williamson MP; Serror P; Mesnage S
    PLoS Pathog; 2019 May; 15(5):e1007730. PubMed ID: 31048927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.