These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19581482)

  • 1. Application of a short intracellular pH method to flow cytometry for determining Saccharomyces cerevisiae vitality.
    Weigert C; Steffler F; Kurz T; Shellhammer TH; Methner FJ
    Appl Environ Microbiol; 2009 Sep; 75(17):5615-20. PubMed ID: 19581482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry.
    Valkonen M; Mojzita D; Penttilä M; Bencina M
    Appl Environ Microbiol; 2013 Dec; 79(23):7179-87. PubMed ID: 24038689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid monitoring of cell size, vitality and lipid droplet development in the oleaginous yeast Waltomyces lipofer.
    Raschke D; Knorr D
    J Microbiol Methods; 2009 Nov; 79(2):178-83. PubMed ID: 19723546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of fluorescence ratio imaging microscopy and flow cytometry for estimation of cell vitality for Bacillus licheniformis.
    Hornbaek T; Dynesen J; Jakobsen M
    FEMS Microbiol Lett; 2002 Oct; 215(2):261-5. PubMed ID: 12399044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry.
    Valli M; Sauer M; Branduardi P; Borth N; Porro D; Mattanovich D
    Appl Environ Microbiol; 2005 Mar; 71(3):1515-21. PubMed ID: 15746355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-dependent, carrier-mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry.
    Breeuwer P; Drocourt JL; Rombouts FM; Abee T
    Appl Environ Microbiol; 1994 May; 60(5):1467-72. PubMed ID: 8017931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein as a dual-emission fluorescent indicator of intracellular pH suitable for argon laser confocal microscopy.
    Lanz E; Slavík J; Kotyk A
    Folia Microbiol (Praha); 1999; 44(4):429-34. PubMed ID: 10983238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Possible Flow Cytometry-Based Viability and Vitality Assessment Protocol for Pathogenic
    Singh A; Barnard TG
    Biomed Res Int; 2021; 2021():5551845. PubMed ID: 34212032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of fluorescent DNA binding dyes for flow cytometric analysis of sporulating Saccharomyces cerevisiae.
    Raithatha SA; Stuart DT
    J Microbiol Methods; 2009 Sep; 78(3):357-9. PubMed ID: 19559735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the dynamics of the physiological states of Lactococcus lactis ssp. cremoris SK11 during growth by flow cytometry.
    El Arbi A; Ghorbal S; Delacroix-Buchet A; Bouix M
    J Appl Microbiol; 2011 Nov; 111(5):1205-11. PubMed ID: 21787374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.
    Rosebrock AP
    Cold Spring Harb Protoc; 2017 Jan; 2017(1):. PubMed ID: 28049776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts.
    Attfield PV; Kletsas S; Veal DA; van Rooijen R; Bell PJ
    J Appl Microbiol; 2000 Aug; 89(2):207-14. PubMed ID: 10971752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual fluorochrome flow cytometric assessment of yeast viability.
    Hernlem B; Hua SS
    Curr Microbiol; 2010 Jul; 61(1):57-63. PubMed ID: 20049598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population analysis of a commercial Saccharomyces cerevisiae wine yeast in a batch culture by electric particle analysis, light diffraction and flow cytometry.
    Portell X; Ginovart M; Carbo R; Gras A; Vives-Rego J
    FEMS Yeast Res; 2011 Feb; 11(1):18-28. PubMed ID: 21040453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of vacuolar and cytosolic pH in vivo in yeast cell suspensions.
    Diakov TT; Tarsio M; Kane PM
    J Vis Exp; 2013 Apr; (74):. PubMed ID: 23629151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Candida shehatae viability by flow cytometry and fluorescent probes.
    Monthéard J; Garcier S; Lombard E; Cameleyre X; Guillouet S; Molina-Jouve C; Alfenore S
    J Microbiol Methods; 2012 Oct; 91(1):8-13. PubMed ID: 22796678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry.
    Petit P; Glab N; Marie D; Kieffer H; Métézeau P
    Cytometry; 1996 Jan; 23(1):28-38. PubMed ID: 14650438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase.
    Imai T; Ohno T
    J Biotechnol; 1995 Jan; 38(2):165-72. PubMed ID: 7765807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid counting method of living cells by fluorescent enzyme substrates.
    Sugata K; Ohnishi T; Matsumoto K
    Biomed Mater Eng; 1991; 1(2):115-25. PubMed ID: 1364630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry.
    Ludovico P; Sansonetty F; Côrte-Real M
    Microbiology (Reading); 2001 Dec; 147(Pt 12):3335-43. PubMed ID: 11739765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.