These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 19581561)
1. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Koutsouleris N; Meisenzahl EM; Davatzikos C; Bottlender R; Frodl T; Scheuerecker J; Schmitt G; Zetzsche T; Decker P; Reiser M; Möller HJ; Gaser C Arch Gen Psychiatry; 2009 Jul; 66(7):700-12. PubMed ID: 19581561 [TBL] [Abstract][Full Text] [Related]
2. Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study. Koutsouleris N; Borgwardt S; Meisenzahl EM; Bottlender R; Möller HJ; Riecher-Rössler A Schizophr Bull; 2012 Nov; 38(6):1234-46. PubMed ID: 22080496 [TBL] [Abstract][Full Text] [Related]
3. Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Borgwardt S; Koutsouleris N; Aston J; Studerus E; Smieskova R; Riecher-Rössler A; Meisenzahl EM Schizophr Bull; 2013 Sep; 39(5):1105-14. PubMed ID: 22969150 [TBL] [Abstract][Full Text] [Related]
4. Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification. Koutsouleris N; Davatzikos C; Bottlender R; Patschurek-Kliche K; Scheuerecker J; Decker P; Gaser C; Möller HJ; Meisenzahl EM Schizophr Bull; 2012 Nov; 38(6):1200-15. PubMed ID: 21576280 [TBL] [Abstract][Full Text] [Related]
5. Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification. Kambeitz-Ilankovic L; Meisenzahl EM; Cabral C; von Saldern S; Kambeitz J; Falkai P; Möller HJ; Reiser M; Koutsouleris N Schizophr Res; 2016 Jun; 173(3):159-165. PubMed ID: 25819936 [TBL] [Abstract][Full Text] [Related]
6. Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms. Sun D; van Erp TG; Thompson PM; Bearden CE; Daley M; Kushan L; Hardt ME; Nuechterlein KH; Toga AW; Cannon TD Biol Psychiatry; 2009 Dec; 66(11):1055-60. PubMed ID: 19729150 [TBL] [Abstract][Full Text] [Related]
7. Classifying individuals at high-risk for psychosis based on functional brain activity during working memory processing. Bendfeldt K; Smieskova R; Koutsouleris N; Klöppel S; Schmidt A; Walter A; Harrisberger F; Wrege J; Simon A; Taschler B; Nichols T; Riecher-Rössler A; Lang UE; Radue EW; Borgwardt S Neuroimage Clin; 2015; 9():555-63. PubMed ID: 26640767 [TBL] [Abstract][Full Text] [Related]
8. Use of neuroanatomical pattern regression to predict the structural brain dynamics of vulnerability and transition to psychosis. Koutsouleris N; Gaser C; Bottlender R; Davatzikos C; Decker P; Jäger M; Schmitt G; Reiser M; Möller HJ; Meisenzahl EM Schizophr Res; 2010 Nov; 123(2-3):175-87. PubMed ID: 20850276 [TBL] [Abstract][Full Text] [Related]
9. Use of Machine Learning to Determine Deviance in Neuroanatomical Maturity Associated With Future Psychosis in Youths at Clinically High Risk. Chung Y; Addington J; Bearden CE; Cadenhead K; Cornblatt B; Mathalon DH; McGlashan T; Perkins D; Seidman LJ; Tsuang M; Walker E; Woods SW; McEwen S; van Erp TGM; Cannon TD; JAMA Psychiatry; 2018 Sep; 75(9):960-968. PubMed ID: 29971330 [TBL] [Abstract][Full Text] [Related]
10. Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Mechelli A; Riecher-Rössler A; Meisenzahl EM; Tognin S; Wood SJ; Borgwardt SJ; Koutsouleris N; Yung AR; Stone JM; Phillips LJ; McGorry PD; Valli I; Velakoulis D; Woolley J; Pantelis C; McGuire P Arch Gen Psychiatry; 2011 May; 68(5):489-95. PubMed ID: 21536978 [TBL] [Abstract][Full Text] [Related]
11. Insular volume abnormalities associated with different transition probabilities to psychosis. Smieskova R; Fusar-Poli P; Aston J; Simon A; Bendfeldt K; Lenz C; Stieglitz RD; McGuire P; Riecher-Rössler A; Borgwardt SJ Psychol Med; 2012 Aug; 42(8):1613-25. PubMed ID: 22126702 [TBL] [Abstract][Full Text] [Related]
12. Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes. Koutsouleris N; Schmitt GJ; Gaser C; Bottlender R; Scheuerecker J; McGuire P; Burgermeister B; Born C; Reiser M; Möller HJ; Meisenzahl EM Br J Psychiatry; 2009 Sep; 195(3):218-26. PubMed ID: 19721111 [TBL] [Abstract][Full Text] [Related]
13. Disorganized Gyrification Network Properties During the Transition to Psychosis. Das T; Borgwardt S; Hauke DJ; Harrisberger F; Lang UE; Riecher-Rössler A; Palaniyappan L; Schmidt A JAMA Psychiatry; 2018 Jun; 75(6):613-622. PubMed ID: 29710118 [TBL] [Abstract][Full Text] [Related]
14. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Koutsouleris N; Meisenzahl EM; Borgwardt S; Riecher-Rössler A; Frodl T; Kambeitz J; Köhler Y; Falkai P; Möller HJ; Reiser M; Davatzikos C Brain; 2015 Jul; 138(Pt 7):2059-73. PubMed ID: 25935725 [TBL] [Abstract][Full Text] [Related]
17. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Koutsouleris N; Riecher-Rössler A; Meisenzahl EM; Smieskova R; Studerus E; Kambeitz-Ilankovic L; von Saldern S; Cabral C; Reiser M; Falkai P; Borgwardt S Schizophr Bull; 2015 Mar; 41(2):471-82. PubMed ID: 24914177 [TBL] [Abstract][Full Text] [Related]
18. Prediction of psychosis in adolescents and young adults at high risk: results from the prospective European prediction of psychosis study. Ruhrmann S; Schultze-Lutter F; Salokangas RK; Heinimaa M; Linszen D; Dingemans P; Birchwood M; Patterson P; Juckel G; Heinz A; Morrison A; Lewis S; von Reventlow HG; Klosterkötter J Arch Gen Psychiatry; 2010 Mar; 67(3):241-51. PubMed ID: 20194824 [TBL] [Abstract][Full Text] [Related]