BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19581580)

  • 21. Identification of human-specific transcript variants induced by DNA insertions in the human genome.
    Kim DS; Hahn Y
    Bioinformatics; 2011 Jan; 27(1):14-21. PubMed ID: 21037245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish.
    Yang L; Zou M; Fu B; He S
    BMC Genomics; 2013 Jan; 14():65. PubMed ID: 23368736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular evolution of the human chromosome 15 pericentromeric region.
    Locke DP; Jiang Z; Pertz LM; Misceo D; Archidiacono N; Eichler EE
    Cytogenet Genome Res; 2005; 108(1-3):73-82. PubMed ID: 15545718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bidirectional promoters as important drivers for the emergence of species-specific transcripts.
    Gotea V; Petrykowska HM; Elnitski L
    PLoS One; 2013; 8(2):e57323. PubMed ID: 23460838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primate transcript and protein expression levels evolve under compensatory selection pressures.
    Khan Z; Ford MJ; Cusanovich DA; Mitrano A; Pritchard JK; Gilad Y
    Science; 2013 Nov; 342(6162):1100-4. PubMed ID: 24136357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MECP2, a gene associated with Rett syndrome in humans, shows conserved coding regions, independent Alu insertions, and a novel transcript across primate evolution.
    Viana MC; Menezes AN; Moreira MA; Pissinatti A; Seuánez HN
    BMC Genet; 2015 Jul; 16():77. PubMed ID: 26148505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core promoter short tandem repeats as evolutionary switch codes for primate speciation.
    Ohadi M; Valipour E; Ghadimi-Haddadan S; Namdar-Aligoodarzi P; Bagheri A; Kowsari A; Rezazadeh M; Darvish H; Kazeminasab S
    Am J Primatol; 2015 Jan; 77(1):34-43. PubMed ID: 25099915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of genome tiling array data reveals many novel primate-specific functional RNAs in human.
    Zhang Z; Pang AW; Gerstein M
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S14. PubMed ID: 17288572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sex-specific and lineage-specific alternative splicing in primates.
    Blekhman R; Marioni JC; Zumbo P; Stephens M; Gilad Y
    Genome Res; 2010 Feb; 20(2):180-9. PubMed ID: 20009012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete cDNA sequences of the DRB6 gene from humans and chimpanzees: a possible model of a stop codon readingthrough mechanism in primates.
    Moreno-Pelayo MA; Fernández-Soria VM; Paz-Artal E; Ferre-López S; Rosal M; Morales P; Varela P; Arnaiz-Villena A
    Immunogenetics; 1999 Sep; 49(10):843-50. PubMed ID: 10436177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of novel human transcript variants by analysis of intronic single-block EST with polyadenylation site.
    Wang P; Yu P; Gao P; Shi T; Ma D
    BMC Genomics; 2009 Nov; 10():518. PubMed ID: 19906316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detailed mapping of the ERG-ETS2 interval of human chromosome 21 and comparison with the region of conserved synteny on mouse chromosome 16.
    Owczarek CM; Portbury KJ; Hardy MP; O'Leary DA; Kudoh J; Shibuya K; Shimizu N; Kola I; Hertzog PJ
    Gene; 2004 Jan; 324():65-77. PubMed ID: 14693372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene conversions in the growth hormone gene family of primates: stronger homogenizing effects in the Hominidae lineage.
    Petronella N; Drouin G
    Genomics; 2011 Sep; 98(3):173-81. PubMed ID: 21683133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolution of the HLA-DRB6 puzzle: a case of grafting a de novo-generated exon on an existing gene.
    Mayer WE; O'hUigin C; Klein J
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10720-4. PubMed ID: 8248165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenetic shadowing of primate sequences to find functional regions of the human genome.
    Boffelli D; McAuliffe J; Ovcharenko D; Lewis KD; Ovcharenko I; Pachter L; Rubin EM
    Science; 2003 Feb; 299(5611):1391-4. PubMed ID: 12610304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The majority of recent short DNA insertions in the human genome are tandem duplications.
    Messer PW; Arndt PF
    Mol Biol Evol; 2007 May; 24(5):1190-7. PubMed ID: 17322553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates.
    Paz-Yaacov N; Levanon EY; Nevo E; Kinar Y; Harmelin A; Jacob-Hirsch J; Amariglio N; Eisenberg E; Rechavi G
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12174-9. PubMed ID: 20566853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression profiling in primates reveals a rapid evolution of human transcription factors.
    Gilad Y; Oshlack A; Smyth GK; Speed TP; White KP
    Nature; 2006 Mar; 440(7081):242-5. PubMed ID: 16525476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The origins and impact of primate segmental duplications.
    Marques-Bonet T; Girirajan S; Eichler EE
    Trends Genet; 2009 Oct; 25(10):443-54. PubMed ID: 19796838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency.
    Kunarso G; Wong KY; Stanton LW; Lipovich L
    BMC Genomics; 2008 Apr; 9():155. PubMed ID: 18400104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.