BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 19581705)

  • 1. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite.
    Horiuchi S; Asaoka K; Tanaka E
    Biomed Mater Eng; 2009; 19(2-3):121-31. PubMed ID: 19581705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a strontium-containing hydroxyapatite bone cement.
    Guo D; Xu K; Zhao X; Han Y
    Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution.
    Sultana R; Hamada K; Ichikawa T; Asaoka K
    Biomed Mater Eng; 2009; 19(2-3):193-204. PubMed ID: 19581714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis.
    Ginebra MP; Driessens FC; Planell JA
    Biomaterials; 2004 Aug; 25(17):3453-62. PubMed ID: 15020119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior.
    Xu JL; Khor KA; Gu YW; Kumar R; Cheang P
    Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition--effects of pH and particle size.
    Chow LC; Markovic M; Frukhtbeyn SA; Takagi S
    Biomaterials; 2005 Feb; 26(4):393-401. PubMed ID: 15275813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.
    Liu C; Chen CW; Ducheyne P
    Biomed Mater; 2008 Sep; 3(3):034111. PubMed ID: 18689928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of added gelatin on the properties of calcium phosphate cement.
    Bigi A; Bracci B; Panzavolta S
    Biomaterials; 2004 Jun; 25(14):2893-9. PubMed ID: 14962568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of adding sodium hexametaphosphate liquefier on basic properties of calcium phosphate cements.
    Hesaraki S; Zamanian A; Moztarzadeh F
    J Biomed Mater Res A; 2009 Feb; 88(2):314-21. PubMed ID: 18286603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.
    Horiuchi S; Hiasa M; Yasue A; Sekine K; Hamada K; Asaoka K; Tanaka E
    J Mech Behav Biomed Mater; 2014 Jan; 29():151-60. PubMed ID: 24090874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
    Neira IS; Kolen'ko YV; Kommareddy KP; Manjubala I; Yoshimura M; Guitián F
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3276-84. PubMed ID: 21038864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste.
    Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity.
    Dagang G; Kewei X; Haoliang S; Yong H
    J Biomed Mater Res A; 2006 May; 77(2):313-23. PubMed ID: 16402384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC
    Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel skeletal drug delivery system using self-setting bioactive glass bone cement. IV: Cephalexin release from cement containing polymer-coated bulk powder.
    Otsuka M; Matsuda Y; Kokubo T; Yoshihara S; Nakamura T; Yamamuro T
    Biomed Mater Eng; 1993; 3(4):229-36. PubMed ID: 8205064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of a novel bioactive bone cement: glass based nanoscale hydroxyapatite bone cement.
    Fu Q; Zhou N; Huang W; Wang D; Zhang L; Li H
    J Mater Sci Mater Med; 2004 Dec; 15(12):1333-8. PubMed ID: 15747186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and in vitro bioactivity of bredigite powders.
    Wu C; Chang J
    J Biomater Appl; 2007 Jan; 21(3):251-63. PubMed ID: 16543286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.