These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19582060)

  • 1. Revival of femtosecond laser plasma filaments in air by a nanosecond laser.
    Zhou B; Akturk S; Prade B; André YB; Houard A; Liu Y; Franco M; D'Amico C; Salmon E; Hao ZQ; Lascoux N; Mysyrowicz A
    Opt Express; 2009 Jul; 17(14):11450-6. PubMed ID: 19582060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elongation of femtosecond filament by molecular alignment in air.
    Cai H; Wu J; Li H; Bai X; Zeng H
    Opt Express; 2009 Nov; 17(23):21060-5. PubMed ID: 19997344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of extended plasma channels in air using femtosecond Bessel beams.
    Polynkin P; Kolesik M; Roberts A; Faccio D; Di Trapani P; Moloney J
    Opt Express; 2008 Sep; 16(20):15733-40. PubMed ID: 18825212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple filamentation generated by focusing femtosecond laser with axicon.
    Sun X; Gao H; Zeng B; Xu S; Liu W; Cheng Y; Xu Z; Mu G
    Opt Lett; 2012 Mar; 37(5):857-9. PubMed ID: 22378417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy.
    Scaffidi J; Pearman W; Carter JC; Angel SM
    Appl Spectrosc; 2006 Jan; 60(1):65-71. PubMed ID: 16454914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown.
    Liu XL; Lu X; Liu X; Xi TT; Liu F; Ma JL; Zhang J
    Opt Express; 2010 Dec; 18(25):26007-17. PubMed ID: 21164948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-radially polarized THz pulse emitted from femtosecond laser filament in air.
    Zhang Y; Chen Y; Marceau C; Liu W; Sun ZD; Xu S; Théberge F; Châteauneuf M; Dubois J; Chin SL
    Opt Express; 2008 Sep; 16(20):15483-8. PubMed ID: 18825186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering.
    Edwards GS; Pearlstein RD; Copeland ML; Hutson MS; Latone K; Spiro A; Pasmanik G
    Opt Lett; 2007 Jun; 32(11):1426-8. PubMed ID: 17546143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence.
    Lu X; Chen SY; Ma JL; Hou L; Liao GQ; Wang JG; Han YJ; Liu XL; Teng H; Han HN; Li YT; Chen LM; Wei ZY; Zhang J
    Sci Rep; 2015 Oct; 5():15515. PubMed ID: 26493279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air.
    Polynkin P; Kolesik M; Moloney J
    Opt Express; 2009 Jan; 17(2):575-84. PubMed ID: 19158870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses.
    Sundaram SK; Mazur E
    Nat Mater; 2002 Dec; 1(4):217-24. PubMed ID: 12618781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widening of Long-range femtosecond laser filaments in turbulent air.
    Ma YY; Lu X; Xi TT; Gong QH; Zhang J
    Opt Express; 2008 Jun; 16(12):8332-41. PubMed ID: 18545547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanosecond pulse lasers for retinal applications.
    Wood JP; Plunkett M; Previn V; Chidlow G; Casson RJ
    Lasers Surg Med; 2011 Aug; 43(6):499-510. PubMed ID: 21761420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses.
    Miyaji G; Miyazaki K
    Opt Express; 2008 Sep; 16(20):16265-71. PubMed ID: 18825266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.
    Evans R; Camacho-López S; Pérez-Gutiérrez FG; Aguilar G
    Opt Express; 2008 May; 16(10):7481-92. PubMed ID: 18545453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-spatiotemporal-quality petawatt-class laser system.
    Kiriyama H; Mori M; Nakai Y; Shimomura T; Sasao H; Tanaka M; Ochi Y; Tanoue M; Okada H; Kondo S; Kanazawa S; Sagisaka A; Daito I; Wakai D; Sasao F; Suzuki M; Kotakai H; Kondo K; Sugiyama A; Bulanov S; Bolton PR; Daido H; Kawanishi S; Collier JL; Hernandez-Gomez C; Hooker CJ; Ertel K; Kimura T; Tajima T
    Appl Opt; 2010 Apr; 49(11):2105-15. PubMed ID: 20390013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical spectroscopy using gas-phase femtosecond laser filamentation.
    Odhner J; Levis R
    Annu Rev Phys Chem; 2014; 65():605-28. PubMed ID: 24423375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of aluminum and hydrogen microplasma.
    Parigger CG; Hornkohl JO; Nemes L
    Appl Opt; 2007 Jul; 46(19):4026-31. PubMed ID: 17571142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standoff spectroscopy via remote generation of a backward-propagating laser beam.
    Hemmer PR; Miles RB; Polynkin P; Siebert T; Sokolov AV; Sprangle P; Scully MO
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3130-4. PubMed ID: 21297033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.