BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19582361)

  • 1. Mechanism-based quantitative structure-activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata.
    Ding G; Li X; Zhang F; Chen J; Huang L; Qiao X
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):520-4. PubMed ID: 19582361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata.
    Ma J; Wang S; Wang P; Ma L; Chen X; Xu R
    Ecotoxicol Environ Saf; 2006 Mar; 63(3):456-62. PubMed ID: 16406601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of 40 herbicides to the green alga Chlorella vulgaris.
    Ma J; Xu L; Wang S; Zheng R; Jin S; Huang S; Huang Y
    Ecotoxicol Environ Saf; 2002 Feb; 51(2):128-32. PubMed ID: 11886186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods.
    Xia B; Liu K; Gong Z; Zheng B; Zhang X; Fan B
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):787-94. PubMed ID: 18950860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard.
    Cedergreen N; Streibig JC
    Pest Manag Sci; 2005 Dec; 61(12):1152-60. PubMed ID: 16196086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata.
    Huang CP; Wang YJ; Chen CY
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):439-46. PubMed ID: 16875732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon.
    Knauer K; Sobek A; Bucheli TD
    Aquat Toxicol; 2007 Jun; 83(2):143-8. PubMed ID: 17482288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris.
    Qian H; Chen W; Li J; Wang J; Zhou Z; Liu W; Fu Z
    Aquat Toxicol; 2009 May; 92(4):250-7. PubMed ID: 19297032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative sensitivity of green algae to herbicides using erlenmeyer flask and microplate growth-inhibition assays.
    Pavlic Z; Stjepanovic B; Horvatic J; Persic V; Puntaric D; Culig J
    Bull Environ Contam Toxicol; 2006 May; 76(5):883-90. PubMed ID: 16786461
    [No Abstract]   [Full Text] [Related]  

  • 10. Optimal growth of Dunaliella primolecta in axenic conditions to assay herbicides.
    Santín-Montanyá I; Sandín-España P; García Baudín JM; Coll-Morales J
    Chemosphere; 2007 Jan; 66(7):1315-22. PubMed ID: 16979216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides.
    Nguyen-Ngoc H; Durrieu C; Tran-Minh C
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):316-20. PubMed ID: 18556067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicological evaluation and QSAR modelling of aromatic amines to Chlorella vulgaris.
    Netzeva TI; Dearden JC; Edwards R; Worgan AD; Cronin MT
    Bull Environ Contam Toxicol; 2004 Aug; 73(2):385-91. PubMed ID: 15386056
    [No Abstract]   [Full Text] [Related]  

  • 13. Differential sensitivity of two green algae, Scenedesmus obliqnus and Chlorella pyrenoidosa, to 12 pesticides.
    Ma J; Zheng R; Xu L; Wang S
    Ecotoxicol Environ Saf; 2002 May; 52(1):57-61. PubMed ID: 12051808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples.
    Escher BI; Bramaz N; Mueller JF; Quayle P; Rutishauser S; Vermeirssen EL
    J Environ Monit; 2008 May; 10(5):612-21. PubMed ID: 18449398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and quantitative structure-activity relationships of benzoic acids to Pseudokirchneriella subcapitata.
    Lee PY; Chen CY
    J Hazard Mater; 2009 Jun; 165(1-3):156-61. PubMed ID: 18990494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay.
    Bengtson Nash SM; Quayle PA; Schreiber U; Müller JF
    Aquat Toxicol; 2005 May; 72(4):315-26. PubMed ID: 15848251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the toxicity of phenolic and phenoxy herbicides using the submitochondrial particle assay.
    Argese E; Bettiol C; Marchetto D; De Vettori S; Zambon A; Miana P; Ghetti PF
    Toxicol In Vitro; 2005 Dec; 19(8):1035-43. PubMed ID: 16023322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms.
    González-Barreiro O; Rioboo C; Herrero C; Cid A
    Environ Pollut; 2006 Nov; 144(1):266-71. PubMed ID: 16488522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The growth behavior of Chlorella vulgaris in the presence of 4-chlorophenol and 2,4-dichlorophenol.
    Sahinkaya E; Dilek FB
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):781-6. PubMed ID: 18192013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSTR with extended topochemical atom (ETA) indices. 9. Comparative QSAR for the toxicity of diverse functional organic compounds to Chlorella vulgaris using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2007 Nov; 70(1):1-12. PubMed ID: 17765287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.