BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19582492)

  • 1. Growth mixture model of distraction osteogenesis: effect of pre-traction stresses.
    Reina-Romo E; Gómez-Benito MJ; García-Aznar JM; Domínguez J; Doblaré M
    Biomech Model Mechanobiol; 2010 Feb; 9(1):103-15. PubMed ID: 19582492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling distraction osteogenesis: analysis of the distraction rate.
    Reina-Romo E; Gómez-Benito MJ; García-Aznar JM; Domínguez J; Doblaré M
    Biomech Model Mechanobiol; 2009 Aug; 8(4):323-35. PubMed ID: 18795353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An interspecies computational study on limb lengthening.
    Reina-Romo E; Gómez-Benito MJ; García-Aznar JM; Domínguez J; Doblaré M
    Proc Inst Mech Eng H; 2010 Nov; 224(11):1245-56. PubMed ID: 21218687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why high frequency of distraction improved the bone formation in distraction osteogenesis?
    Ji B; Jiang G; Fu J; Long J; Wang H
    Med Hypotheses; 2010 May; 74(5):871-3. PubMed ID: 20018456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone regeneration and fracture healing. Experience with distraction osteogenesis model.
    Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zoledronic acid prevents osteopenia and increases bone strength in a rabbit model of distraction osteogenesis.
    Little DG; Smith NC; Williams PR; Briody JN; Bilston LE; Smith EJ; Gardiner EM; Cowell CT
    J Bone Miner Res; 2003 Jul; 18(7):1300-7. PubMed ID: 12854841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple mechanism for measuring and adjusting distraction forces during maxillary advancement.
    Suzuki EY; Suzuki B
    J Oral Maxillofac Surg; 2009 Oct; 67(10):2245-53. PubMed ID: 19761920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forces involved in lower limb lengthening: an in vivo biomechanical study.
    Lauterburg MT; Exner GU; Jacob HA
    J Orthop Res; 2006 Sep; 24(9):1815-22. PubMed ID: 16865711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the fixator stiffness on the young regenerate bone after bone transport: computational approach.
    Reina-Romo E; Gómez-Benito MJ; Domínguez J; Niemeyer F; Wehner T; Simon U; Claes LE
    J Biomech; 2011 Mar; 44(5):917-23. PubMed ID: 21168137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible problems of moulding the regenerate in mandibular distraction osteogenesis -- experimental aspects in a canine model.
    Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B
    J Craniomaxillofac Surg; 2005 Dec; 33(6):377-85. PubMed ID: 16253512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model.
    Loboa EG; Fang TD; Warren SM; Lindsey DP; Fong KD; Longaker MT; Carter DR
    Bone; 2004 Feb; 34(2):336-43. PubMed ID: 14962812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis.
    Zheng LW; Ma L; Cheung LK
    J Craniomaxillofac Surg; 2009 Oct; 37(7):405-11. PubMed ID: 19428266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histomorphometry of distraction osteogenesis in a caprine tibial lengthening model.
    Welch RD; Birch JG; Makarov MR; Samchukov ML
    J Bone Miner Res; 1998 Jan; 13(1):1-9. PubMed ID: 9443783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis.
    Ozkan K; Eralp L; Kocaoglu M; Ahishali B; Bilgic B; Mutlu Z; Turker M; Ozkan FU; Sahin K; Guven M
    Growth Factors; 2007 Apr; 25(2):101-7. PubMed ID: 17891595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity.
    Isaksson H; Comas O; van Donkelaar CC; Mediavilla J; Wilson W; Huiskes R; Ito K
    J Biomech; 2007; 40(9):2002-11. PubMed ID: 17112532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation.
    Ilizarov GA
    Clin Orthop Relat Res; 1989 Jan; (238):249-81. PubMed ID: 2910611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a musculo-skeletal model of the mandible and its application to mandibular distraction osteogenesis.
    de Zee M; Dalstra M; Cattaneo PM; Rasmussen J; Svensson P; Melsen B
    J Biomech; 2007; 40(6):1192-201. PubMed ID: 16930608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical and clinical implications of distraction osteogenesis in craniofacial surgery.
    Meyer U; Kleinheinz J; Joos U
    J Craniomaxillofac Surg; 2004 Jun; 32(3):140-9. PubMed ID: 15113571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis.
    Aronson J; Harp JH
    Clin Orthop Relat Res; 1994 Apr; (301):73-9. PubMed ID: 8156700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction.
    Ilizarov GA
    Clin Orthop Relat Res; 1989 Feb; (239):263-85. PubMed ID: 2912628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.