These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19582587)

  • 1. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters.
    Cheng B; Wu G; Vrinten P; Falk K; Bauer J; Qiu X
    Transgenic Res; 2010 Apr; 19(2):221-9. PubMed ID: 19582587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds.
    Peng Q; Hu Y; Wei R; Zhang Y; Guan C; Ruan Y; Liu C
    Plant Cell Rep; 2010 Apr; 29(4):317-25. PubMed ID: 20130882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ω3 fatty acid desaturases from oomycetes and their application toward eicosapentaenoic acid production in Mortierella alpina.
    Mo BKH; Ando A; Nakatsuji R; Okuda T; Takemoto Y; Ikemoto H; Kikukawa H; Sakamoto T; Sakuradani E; Ogawa J
    Biosci Biotechnol Biochem; 2021 Apr; 85(5):1252-1265. PubMed ID: 33728459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of eicosapentaenoic acid (EPA, 20:5n-3) in transgenic peanut (Arachis hypogaea L.) through the alternative Δ8-desaturase pathway.
    Wang C; Qing X; Yu M; Sun Q; Liu F; Qi B; Li X
    Mol Biol Rep; 2019 Feb; 46(1):333-342. PubMed ID: 30511300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Erucic Acid and Wax Ester Production in
    Tesfaye M; Wang ES; Feyissa T; Herrfurth C; Haileselassie T; Kanagarajan S; Feussner I; Zhu LH
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level production of gamma-linolenic acid in Brassica juncea using a delta6 desaturase from Pythium irregulare.
    Hong H; Datla N; Reed DW; Covello PS; MacKenzie SL; Qiu X
    Plant Physiol; 2002 May; 129(1):354-62. PubMed ID: 12011365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.
    Pereira SL; Huang YS; Bobik EG; Kinney AJ; Stecca KL; Packer JC; Mukerji P
    Biochem J; 2004 Mar; 378(Pt 2):665-71. PubMed ID: 14651475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved eicosapentaenoic acid production in Pythium splendens RBB-5 based on metabolic regulation analysis.
    Ren L; Zhou P; Zhu Y; Zhang R; Yu L
    Appl Microbiol Biotechnol; 2017 May; 101(9):3769-3780. PubMed ID: 28083652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use.
    Taylor DC; Francis T; Guo Y; Brost JM; Katavic V; Mietkiewska E; Michael Giblin E; Lozinsky S; Hoffman T
    Plant Biotechnol J; 2009 Dec; 7(9):925-38. PubMed ID: 19843251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants.
    Sayanova OV; Napier JA
    Phytochemistry; 2004 Jan; 65(2):147-58. PubMed ID: 14732274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene.
    Jadhav A; Katavic V; Marillia EF; Michael Giblin E; Barton DL; Kumar A; Sonntag C; Babic V; Keller WA; Taylor DC
    Metab Eng; 2005 May; 7(3):215-20. PubMed ID: 15885619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica.
    Li X; van Loo EN; Gruber J; Fan J; Guan R; Frentzen M; Stymne S; Zhu LH
    Plant Biotechnol J; 2012 Sep; 10(7):862-70. PubMed ID: 22642539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering plant seeds with fish oil-like levels of DHA.
    Petrie JR; Shrestha P; Zhou XR; Mansour MP; Liu Q; Belide S; Nichols PD; Singh SP
    PLoS One; 2012; 7(11):e49165. PubMed ID: 23145108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a delta5 FA desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops.
    Hong H; Datla N; MacKenzie SL; Qiu X
    Lipids; 2002 Sep; 37(9):863-8. PubMed ID: 12458621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella.
    Li D; Lei Z; Xue J; Zhou G; Hang Y; Sun X
    Planta; 2017 Oct; 246(4):763-778. PubMed ID: 28674753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica.
    Guan R; Lager I; Li X; Stymne S; Zhu LH
    Plant Biotechnol J; 2014 Feb; 12(2):193-203. PubMed ID: 24119222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid Delta6-desaturase, Delta6-elongase, and Delta5-desaturase genes.
    Kajikawa M; Matsui K; Ochiai M; Tanaka Y; Kita Y; Ishimoto M; Kohzu Y; Shoji S; Yamato KT; Ohyama K; Fukuzawa H; Kohchi T
    Biosci Biotechnol Biochem; 2008 Feb; 72(2):435-44. PubMed ID: 18256477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl-end desaturases with ∆12 and ω3 regioselectivities enable the de novo PUFA biosynthesis in the cephalopod Octopus vulgaris.
    Garrido D; Kabeya N; Hontoria F; Navarro JC; Reis DB; Martín MV; Rodríguez C; Almansa E; Monroig Ó
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Aug; 1864(8):1134-1144. PubMed ID: 31048041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the Substrate Preferences of ω3 Fatty Acid Desaturases for Long Chain Polyunsaturated Fatty Acids.
    Shrestha P; Zhou XR; Vibhakaran Pillai S; Petrie J; de Feyter R; Singh S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31234541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds.
    Shi J; Lang C; Wang F; Wu X; Liu R; Zheng T; Zhang D; Chen J; Wu G
    Plant Sci; 2017 Oct; 263():177-182. PubMed ID: 28818373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.