These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1191 related articles for article (PubMed ID: 19582590)
1. From industrial sites to environmental applications with Cupriavidus metallidurans. Diels L; Van Roy S; Taghavi S; Van Houdt R Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590 [TBL] [Abstract][Full Text] [Related]
2. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. von Rozycki T; Nies DH Antonie Van Leeuwenhoek; 2009 Aug; 96(2):115-39. PubMed ID: 18830684 [TBL] [Abstract][Full Text] [Related]
3. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. Monchy S; Benotmane MA; Janssen P; Vallaeys T; Taghavi S; van der Lelie D; Mergeay M J Bacteriol; 2007 Oct; 189(20):7417-25. PubMed ID: 17675385 [TBL] [Abstract][Full Text] [Related]
4. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Van Houdt R; Monchy S; Leys N; Mergeay M Antonie Van Leeuwenhoek; 2009 Aug; 96(2):205-26. PubMed ID: 19390985 [TBL] [Abstract][Full Text] [Related]
5. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Rajkumar M; Vara Prasad MN; Freitas H; Ae N Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893 [TBL] [Abstract][Full Text] [Related]
6. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Bose S; Bhattacharyya AK Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356 [TBL] [Abstract][Full Text] [Related]
7. Microarray analysis of a microbe-mineral interaction. Olsson-Francis K; VAN Houdt R; Mergeay M; Leys N; Cockell CS Geobiology; 2010 Dec; 8(5):446-56. PubMed ID: 20718869 [TBL] [Abstract][Full Text] [Related]
8. Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. Grosse C; Friedrich S; Nies DH J Mol Microbiol Biotechnol; 2007; 12(3-4):227-40. PubMed ID: 17587871 [TBL] [Abstract][Full Text] [Related]
9. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Yilmaz EI Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Monsieurs P; Moors H; Van Houdt R; Janssen PJ; Janssen A; Coninx I; Mergeay M; Leys N Biometals; 2011 Dec; 24(6):1133-51. PubMed ID: 21706166 [TBL] [Abstract][Full Text] [Related]
11. Introduction to a special Festschrift issue celebrating the microbiology of Cupriavidus metallidurans strain CH34. Silver S; Mergeay M Antonie Van Leeuwenhoek; 2009 Aug; 96(2):113-4. PubMed ID: 19551487 [No Abstract] [Full Text] [Related]
12. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Ruttens A; Colpaert JV; Mench M; Boisson J; Carleer R; Vangronsveld J Environ Pollut; 2006 Nov; 144(2):533-9. PubMed ID: 16530308 [TBL] [Abstract][Full Text] [Related]
13. Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress. Shamim S; Rehman A J Basic Microbiol; 2015 Mar; 55(3):374-81. PubMed ID: 23832807 [TBL] [Abstract][Full Text] [Related]
14. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Rajkumar M; Ae N; Freitas H Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Alisi C; Musella R; Tasso F; Ubaldi C; Manzo S; Cremisini C; Sprocati AR Sci Total Environ; 2009 Apr; 407(8):3024-32. PubMed ID: 19201450 [TBL] [Abstract][Full Text] [Related]
16. Insertion sequence elements in Cupriavidus metallidurans CH34: distribution and role in adaptation. Mijnendonckx K; Provoost A; Monsieurs P; Leys N; Mergeay M; Mahillon J; Van Houdt R Plasmid; 2011 May; 65(3):193-203. PubMed ID: 21185859 [TBL] [Abstract][Full Text] [Related]
17. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments. Khan KS; Joergensen RG Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685 [TBL] [Abstract][Full Text] [Related]
18. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Rajkumar M; Ae N; Prasad MN; Freitas H Trends Biotechnol; 2010 Mar; 28(3):142-9. PubMed ID: 20044160 [TBL] [Abstract][Full Text] [Related]
19. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil. de la Fuente C; Clemente R; Bernal MP Ecotoxicol Environ Saf; 2008 Jun; 70(2):207-15. PubMed ID: 17659778 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Abou-Shanab RA; van Berkum P; Angle JS Chemosphere; 2007 Jun; 68(2):360-7. PubMed ID: 17276484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]