These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19582716)

  • 1. Fabrication of a microfluidic enzyme reactor utilizing magnetic beads.
    Liu X; Lo RC; Gomez FA
    Electrophoresis; 2009 Jun; 30(12):2129-33. PubMed ID: 19582716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper microfluidic-based enzyme catalyzed double microreactor.
    Ferrer IM; Valadez H; Estala L; Gomez FA
    Electrophoresis; 2014 Aug; 35(16):2417-9. PubMed ID: 24913741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis.
    Mavré F; Bontemps M; Ammar-Merah S; Marchal D; Limoges B
    Anal Chem; 2007 Jan; 79(1):187-94. PubMed ID: 17194138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial P450-catalyzed polyketide hydroxylation on a microfluidic platform.
    Srinivasan A; Bach H; Sherman DH; Dordick JS
    Biotechnol Bioeng; 2004 Nov; 88(4):528-35. PubMed ID: 15459906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection.
    Berti F; Laschi S; Palchetti I; Rossier JS; Reymond F; Mascini M; Marrazza G
    Talanta; 2009 Jan; 77(3):971-8. PubMed ID: 19064077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled proteolysis of normal and pathological prion protein in a microfluidic chip.
    Le Nel A; Minc N; Smadja C; Slovakova M; Bilkova Z; Peyrin JM; Viovy JL; Taverna M
    Lab Chip; 2008 Feb; 8(2):294-301. PubMed ID: 18231669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated microfluidic platform for magnetic microbeads separation and confinement.
    Ramadan Q; Samper V; Poenar DP; Yu C
    Biosens Bioelectron; 2006 Mar; 21(9):1693-702. PubMed ID: 16203127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic conductimetric bioreactor.
    Limbut W; Loyprasert S; Thammakhet C; Thavarungkul P; Tuantranont A; Asawatreratanakul P; Limsakul C; Wongkittisuksa B; Kanatharana P
    Biosens Bioelectron; 2007 Jun; 22(12):3064-71. PubMed ID: 17289366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes.
    Limoges B; Marchal D; Mavré F; Savéant JM
    J Am Chem Soc; 2006 Feb; 128(6):2084-92. PubMed ID: 16464111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
    Ramadan Q; Gijs MA
    Analyst; 2011 Mar; 136(6):1157-66. PubMed ID: 21270982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-porous magnetic micro-particles: comparison to porous enzyme carriers for a diffusion rate-controlled enzymatic conversion.
    Magario I; Ma X; Neumann A; Syldatk C; Hausmann R
    J Biotechnol; 2008 Mar; 134(1-2):72-8. PubMed ID: 18241946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microchannel enzyme reactors and their applications for processing.
    Miyazaki M; Maeda H
    Trends Biotechnol; 2006 Oct; 24(10):463-70. PubMed ID: 16934892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q; Xu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA.
    Herrmann M; Veres T; Tabrizian M
    Lab Chip; 2006 Apr; 6(4):555-60. PubMed ID: 16572219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microchip frontal affinity chromatography to study the binding of a ligand to teicoplanin-derivatized microbeads.
    Liu X; Gomez FA
    Electrophoresis; 2009 Apr; 30(7):1194-7. PubMed ID: 19283695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis.
    Yoon SK; Choban ER; Kane C; Tzedakis T; Kenis PJ
    J Am Chem Soc; 2005 Aug; 127(30):10466-7. PubMed ID: 16045315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capture and separation of biomolecules using magnetic beads in a simple microfluidic channel without an external flow device.
    Wang J; Morabito K; Erkers T; Tripathi A
    Analyst; 2013 Nov; 138(21):6573-81. PubMed ID: 24051541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes.
    Liu CJ; Lien KY; Weng CY; Shin JW; Chang TY; Lee GB
    Biomed Microdevices; 2009 Apr; 11(2):339-50. PubMed ID: 19034667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads.
    Bayramoğlu G; Arica MY
    J Hazard Mater; 2008 Aug; 156(1-3):148-55. PubMed ID: 18207637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.