BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 19582752)

  • 1. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.
    Hirsch A
    Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752
    [No Abstract]   [Full Text] [Related]  

  • 2. Resonant tunneling through S- and U-shaped graphene nanoribbons.
    Zhang ZZ; Wu ZH; Chang K; Peeters FM
    Nanotechnology; 2009 Oct; 20(41):415203. PubMed ID: 19755722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical behavior of caffeic acid at single-walled carbon nanotube:graphite-based electrode.
    Moghaddam AB; Ganjali MR; Dinarvand R; Norouzi P; Saboury AA; Moosavi-Movahedi AA
    Biophys Chem; 2007 Jun; 128(1):30-7. PubMed ID: 17389147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons.
    Kumar P; Panchakarla LS; Rao CN
    Nanoscale; 2011 May; 3(5):2127-9. PubMed ID: 21445381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids.
    Lu J; Yang JX; Wang J; Lim A; Wang S; Loh KP
    ACS Nano; 2009 Aug; 3(8):2367-75. PubMed ID: 19702326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of pollutant aromatics on carbon nanotubes and graphite.
    Ramraj A; Hillier IH
    J Chem Inf Model; 2010 Apr; 50(4):585-8. PubMed ID: 20356088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene.
    Lara-Romero J; Alonso-Núñez G; Jiménez-Sandoval S; Avalos-Borja M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6509-12. PubMed ID: 19205231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene edges: a review of their fabrication and characterization.
    Jia X; Campos-Delgado J; Terrones M; Meunier V; Dresselhaus MS
    Nanoscale; 2011 Jan; 3(1):86-95. PubMed ID: 21103548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative differential resistance in oxidized zigzag graphene nanoribbons.
    Wang M; Li CM
    Phys Chem Chem Phys; 2011 Jan; 13(4):1413-8. PubMed ID: 21152514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets.
    Wong CH; Pumera M
    Phys Chem Chem Phys; 2013 May; 15(20):7755-9. PubMed ID: 23598744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes.
    Xu YJ; Liu X; Cui G; Zhu B; Weinberg G; Schlögl R; Maier J; Su DS
    ChemSusChem; 2010 Mar; 3(3):343-9. PubMed ID: 20029929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced electrochemical lithium storage by graphene nanoribbons.
    Bhardwaj T; Antic A; Pavan B; Barone V; Fahlman BD
    J Am Chem Soc; 2010 Sep; 132(36):12556-8. PubMed ID: 20731378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetism of substitutional Fe impurities in graphene nanoribbons.
    Longo RC; Carrete J; Gallego LJ
    J Chem Phys; 2011 Jan; 134(2):024704. PubMed ID: 21241143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of carbon nanotubes unzipping into graphene ribbons.
    Rangel NL; Sotelo JC; Seminario JM
    J Chem Phys; 2009 Jul; 131(3):031105. PubMed ID: 19624173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.