BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19582779)

  • 1. Characterization of the expression of variant and standard CD44 in prostate cancer cells: identification of the possible molecular mechanism of CD44/MMP9 complex formation on the cell surface.
    Desai B; Ma T; Zhu J; Chellaiah MA
    J Cell Biochem; 2009 Sep; 108(1):272-84. PubMed ID: 19582779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells.
    Desai B; Rogers MJ; Chellaiah MA
    Mol Cancer; 2007 Mar; 6():18. PubMed ID: 17343740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced cell surface CD44 variant (v6, v9) expression by osteopontin in breast cancer epithelial cells facilitates tumor cell migration: novel post-transcriptional, post-translational regulation.
    Khan SA; Cook AC; Kappil M; Günthert U; Chambers AF; Tuck AB; Denhardt DT
    Clin Exp Metastasis; 2005; 22(8):663-73. PubMed ID: 16691370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promising noninvasive cellular phenotype in prostate cancer cells knockdown of matrix metalloproteinase 9.
    Gupta A; Cao W; Sadashivaiah K; Chen W; Schneider A; Chellaiah MA
    ScientificWorldJournal; 2013; 2013():493689. PubMed ID: 23476138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane localization of membrane type 1 matrix metalloproteinase by CD44 regulates the activation of pro-matrix metalloproteinase 9 in osteoclasts.
    Chellaiah MA; Ma T
    Biomed Res Int; 2013; 2013():302392. PubMed ID: 23984338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells.
    Senbanjo LT; AlJohani H; Majumdar S; Chellaiah MA
    Cell Commun Signal; 2019 Jul; 17(1):80. PubMed ID: 31331331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix Metalloproteinase 9 and Osteopontin Interact to Support Synaptogenesis in the Olfactory Bulb after Mild Traumatic Brain Injury.
    Powell MA; Black RT; Smith TL; Reeves TM; Phillips LL
    J Neurotrauma; 2019 May; 36(10):1615-1631. PubMed ID: 30444175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD44 variant isoforms in head and neck squamous cell carcinoma progression.
    Wang SJ; Wong G; de Heer AM; Xia W; Bourguignon LY
    Laryngoscope; 2009 Aug; 119(8):1518-30. PubMed ID: 19507218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased levels of CD44 protein and mRNA in prostate carcinoma. Correlation with tumor grade and ploidy.
    Kallakury BV; Yang F; Figge J; Smith KE; Kausik SJ; Tacy NJ; Fisher HA; Kaufman R; Figge H; Ross JS
    Cancer; 1996 Oct; 78(7):1461-9. PubMed ID: 8839552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells.
    Robertson BW; Bonsal L; Chellaiah MA
    Mol Cancer; 2010 Sep; 9():260. PubMed ID: 20868520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rho-dependent Rho kinase activation increases CD44 surface expression and bone resorption in osteoclasts.
    Chellaiah MA; Biswas RS; Rittling SR; Denhardt DT; Hruska KA
    J Biol Chem; 2003 Aug; 278(31):29086-97. PubMed ID: 12730217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation stabilizes alternatively spliced CD44 mRNA transcripts in breast cancer cells: inhibition by antisense complementary to casein kinase II mRNA.
    Formby B; Stern R
    Mol Cell Biochem; 1998 Oct; 187(1-2):23-31. PubMed ID: 9788739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The osteopontin-CD44 axis in hepatic cancer stem cells regulates IFN signaling and HCV replication.
    Shirasaki T; Honda M; Yamashita T; Nio K; Shimakami T; Shimizu R; Nakasyo S; Murai K; Shirasaki N; Okada H; Sakai Y; Sato T; Suzuki T; Yoshioka K; Kaneko S
    Sci Rep; 2018 Sep; 8(1):13143. PubMed ID: 30177680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous targeting of CD44 and MMP9 catalytic and hemopexin domains as a therapeutic strategy.
    Yosef G; Hayun H; Papo N
    Biochem J; 2021 Mar; 478(5):1139-1157. PubMed ID: 33600567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting SMAD3 for inhibiting prostate cancer metastasis.
    Xia Q; Li C; Bian P; Wang J; Dong S
    Tumour Biol; 2014 Sep; 35(9):8537-41. PubMed ID: 25056536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequent expression of the high molecular, 673-bp CD44v3,v8-10 variant in colorectal adenomas and carcinomas.
    Kopp R; Fichter M; Schalhorn G; Danescu J; Classen S
    Int J Mol Med; 2009 Nov; 24(5):677-83. PubMed ID: 19787202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invadopodia and matrix degradation, a new property of prostate cancer cells during migration and invasion.
    Desai B; Ma T; Chellaiah MA
    J Biol Chem; 2008 May; 283(20):13856-66. PubMed ID: 18337256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fluid of suicide attempters and is associated with increased blood-brain barrier permeability.
    Ventorp F; Barzilay R; Erhardt S; Samuelsson M; Träskman-Bendz L; Janelidze S; Weizman A; Offen D; Brundin L
    J Affect Disord; 2016 Mar; 193():349-54. PubMed ID: 26796235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia induces differential expression patterns of osteopontin and CD44 in colorectal carcinoma.
    Wohlleben G; Hauff K; Gasser M; Waaga-Gasser AM; Grimmig T; Flentje M; Polat B
    Oncol Rep; 2018 Jan; 39(1):442-448. PubMed ID: 29115557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD44 and the adhesion of neoplastic cells.
    Rudzki Z; Jothy S
    Mol Pathol; 1997 Apr; 50(2):57-71. PubMed ID: 9231152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.