These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19583160)

  • 1. A new technique for characterizing the efficacy of fugitive dust suppressants.
    Kavouras IG; Etyemezian V; Nikolich G; Gillies J; Sweeney M; Young M; Shafer D
    J Air Waste Manag Assoc; 2009 May; 59(5):603-12. PubMed ID: 19583160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wind tunnel and field evaluation of various dust suppressants.
    Preston CA; McKenna Neuman C; Boulton JW
    J Air Waste Manag Assoc; 2020 Sep; 70(9):915-931. PubMed ID: 32584212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wood-strand material for wind erosion control: effects on total sediment loss, PM10 vertical flux, and PM10 loss.
    Copeland NS; Sharratt BS; Wu JQ; Foltz RB; Dooley JH
    J Environ Qual; 2009; 38(1):139-48. PubMed ID: 19141803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of Test Method for Dust Suppression Efficiency of Wind Erosion Dust Suppressant].
    Qin JP; Li BB; Yang T; Song B; Huang YH; Zhang CL
    Huan Jing Ke Xue; 2019 Sep; 40(9):3935-3941. PubMed ID: 31854855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a combined measurement and modeling method to quantify windblown dust emissions from the exposed playa at Mono Lake, California.
    Ono D; Kiddoo P; Howard C; Davis G; Richmond K
    J Air Waste Manag Assoc; 2011 Oct; 61(10):1036-45. PubMed ID: 22070036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on characteristics and microscopic mechanism of composite environment-friendly dust suppressant for urban construction site soil fugitive dust based on response surface methodology optimization.
    Wang X; Yang J; Li X
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41954-41969. PubMed ID: 36640236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil desiccation rate integration into empirical dust emission models for polymer suppressant evaluation.
    Bae S; Inyang HI; De Brito Galvão TC; Mbamalu GE
    J Hazard Mater; 2006 Apr; 132(1):111-7. PubMed ID: 16442727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring].
    Gao S; Pan XC; Madaniyazi LN; Xie J; He YH
    Zhonghua Yu Fang Yi Xue Za Zhi; 2013 Sep; 47(9):837-42. PubMed ID: 24351566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA.
    Goossens D; Buck B
    J Environ Manage; 2009 Aug; 90(11):3458-69. PubMed ID: 19540651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Emission Characteristics of Wind Erosion Dust from Topsoil of Urban Roadside-Tree Pool].
    Li BB; Qin JP; Qi LR; Yang T; Qu S; Shi AJ; Huang YH
    Huan Jing Ke Xue; 2018 Mar; 39(3):1031-1039. PubMed ID: 29965446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodology for the determination of fugitive dust emissions from landfill sites.
    Chalvatzaki E; Glytsos T; Lazaridis M
    Int J Environ Health Res; 2015; 25(5):551-69. PubMed ID: 25563337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fugitive dust emissions from paved road travel in the Lake Tahoe basin.
    Zhu D; Kuhns HD; Brown S; Gillies JA; Etyemezian V; Gertler AW
    J Air Waste Manag Assoc; 2009 Oct; 59(10):1219-29. PubMed ID: 19842329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effectiveness of low emission zones of stage 1: analysis of the changes in fine dust concentrations (PM10) in 19 German cities].
    Morfeld P; Groneberg DA; Spallek M
    Pneumologie; 2014 Mar; 68(3):173-86. PubMed ID: 24431100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.
    Achilleos S; Evans JS; Yiallouros PK; Kleanthous S; Schwartz J; Koutrakis P
    J Air Waste Manag Assoc; 2014 Dec; 64(12):1352-60. PubMed ID: 25562931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Efficiencies of Dust Suppressants to Reduce PM
    Gillies JA; Watson JG; Rogers CF; DuBois D; Chow JC; Langston R; Sweet J
    J Air Waste Manag Assoc; 1999 Jan; 49(1):3-16. PubMed ID: 28060609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing potential water quality impacts from soils treated with dust suppressants.
    Beighley RE; He Y; Valdes JR
    J Environ Qual; 2009; 38(2):502-12. PubMed ID: 19202020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan.
    Chang CT; Chang YM; Lin WY; Wu MC
    J Air Waste Manag Assoc; 2010 Oct; 60(10):1262-8. PubMed ID: 21090554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparations and application of dust suppressants from biomass-based materials.
    Tsogt B; Oh SY
    J Air Waste Manag Assoc; 2021 Nov; 71(11):1386-1396. PubMed ID: 34128771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of watering to control dust in high winds.
    Fitz DR; Bumiller K
    J Air Waste Manag Assoc; 2000 Apr; 50(4):570-7. PubMed ID: 10786009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.