BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19583209)

  • 1. Positively charged base surrogate for highly stable "base pairing" through electrostatic and stacking interactions.
    Kashida H; Ito H; Fujii T; Hayashi T; Asanuma H
    J Am Chem Soc; 2009 Jul; 131(29):9928-30. PubMed ID: 19583209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of cationic dyes into DNA for distinct stabilization of duplex.
    Kashida H; Itoh H; Fujii T; Asanuma H
    Nucleic Acids Symp Ser (Oxf); 2008; (52):701-2. PubMed ID: 18776573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threoninol as a scaffold of dyes (threoninol-nucleotide) and their stable interstrand clustering in duplexes.
    Kashida H; Fujii T; Asanuma H
    Org Biomol Chem; 2008 Aug; 6(16):2892-9. PubMed ID: 18688481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New base pairing motifs. The synthesis and thermal stability of oligodeoxynucleotides containing imidazopyridopyrimidine nucleosides with the ability to form four hydrogen bonds.
    Minakawa N; Kojima N; Hikishima S; Sasaki T; Kiyosue A; Atsumi N; Ueno Y; Matsuda A
    J Am Chem Soc; 2003 Aug; 125(33):9970-82. PubMed ID: 12914460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-stem molecular beacon containing a pseudo base pair of threoninol nucleotides for the removal of background emission.
    Kashida H; Takatsu T; Fujii T; Sekiguchi K; Liang X; Niwa K; Takase T; Yoshida Y; Asanuma H
    Angew Chem Int Ed Engl; 2009; 48(38):7044-7. PubMed ID: 19705388
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis and characterization of oligodeoxynucleotides containing naphthyridine:imidazopyridopyrimidine base pairs at their sticky ends. Application as thermally stabilized decoy molecules.
    Hikishima S; Minakawa N; Kuramoto K; Ogata S; Matsuda A
    Chembiochem; 2006 Dec; 7(12):1970-5. PubMed ID: 17031887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and structural properties of oligonucleotides covalently linked to acridine and quindoline derivatives through a threoninol linker.
    Aviñó A; Mazzini S; Ferreira R; Eritja R
    Bioorg Med Chem; 2010 Nov; 18(21):7348-56. PubMed ID: 20888244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides.
    Michel T; Debart F; Heitz F; Vasseur JJ
    Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nick sealing by T4 DNA ligase on a modified DNA template: tethering a functional molecule on D-threoninol.
    Liang X; Fujioka K; Asanuma H
    Chemistry; 2011 Sep; 17(37):10388-96. PubMed ID: 21815224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and properties of oligonucleotides with iodo-substituted aromatic aglycons: investigation of possible halogen bonding base pairs.
    Tawarada R; Seio K; Sekine M
    J Org Chem; 2008 Jan; 73(2):383-90. PubMed ID: 18081343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pentafluorophenyl-phenyl interactions in biphenyl-DNA.
    Zahn A; Brotschi C; Leumann CJ
    Chemistry; 2005 Mar; 11(7):2125-9. PubMed ID: 15714531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of pK(a) of Brooker's merocyanine by DNA hybridization.
    Kashida H; Sano K; Hara Y; Asanuma H
    Bioconjug Chem; 2009 Feb; 20(2):258-65. PubMed ID: 19170520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of oligonucleotides carrying thiol groups using a simple reagent derived from threoninol.
    Pérez-Rentero S; Grijalvo S; Ferreira R; Eritja R
    Molecules; 2012 Aug; 17(9):10026-45. PubMed ID: 22922274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpectedly stable artificial duplex from flexible acyclic threoninol.
    Asanuma H; Toda T; Murayama K; Liang X; Kashida H
    J Am Chem Soc; 2010 Oct; 132(42):14702-3. PubMed ID: 20886877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligonucleotides with Cationic Backbone and Their Hybridization with DNA: Interplay of Base Pairing and Electrostatic Attraction.
    Schmidtgall B; Kuepper A; Meng M; Grossmann TN; Ducho C
    Chemistry; 2018 Feb; 24(7):1544-1553. PubMed ID: 29048135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the guanidinium group on hybridization and cellular uptake of cationic oligonucleotides.
    Deglane G; Abes S; Michel T; Prévot P; Vives E; Debart F; Barvik I; Lebleu B; Vasseur JJ
    Chembiochem; 2006 Apr; 7(4):684-92. PubMed ID: 16518865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2'-Deoxyimmunosine: stereoselective synthesis, base pairing and duplex stability of oligonucleotides containing 8-oxo-7-thiaguanine.
    Seela F; Ming X
    Org Biomol Chem; 2008 Apr; 6(8):1450-61. PubMed ID: 18385852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic nucleic acid secondary structures containing the four stereoisomers of 1,4-bis(thymine-1-yl)butane-2,3-diol.
    Christensen MS; Bond AD; Nielsen P
    Org Biomol Chem; 2008 Jan; 6(1):81-91. PubMed ID: 18075652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New nucleotide pairs for stable DNA triplexes stabilized by stacking interaction.
    Mizuta M; Banba J; Kanamori T; Tawarada R; Ohkubo A; Sekine M; Seio K
    J Am Chem Soc; 2008 Jul; 130(30):9622-3. PubMed ID: 18611007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the thermodynamics and base-pair dynamics of a full LNA:DNA duplex and of the isosequential DNA:DNA duplex.
    Bruylants G; Boccongelli M; Snoussi K; Bartik K
    Biochemistry; 2009 Sep; 48(35):8473-82. PubMed ID: 19670874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.