These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 19583964)

  • 21. Inhibition of mitogen-activated protein kinase activity and proliferation of an early osteoblast cell line (MBA 15.4) by dexamethasone: role of protein phosphatases.
    Hulley PA; Gordon F; Hough FS
    Endocrinology; 1998 May; 139(5):2423-31. PubMed ID: 9564854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active mutants of the TCR-mediated p38α alternative activation site show changes in the phosphorylation lip and DEF site formation.
    Tzarum N; Diskin R; Engelberg D; Livnah O
    J Mol Biol; 2011 Feb; 405(5):1154-69. PubMed ID: 21146537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DEF pocket in p38α facilitates substrate selectivity and mediates autophosphorylation.
    Tzarum N; Komornik N; Ben Chetrit D; Engelberg D; Livnah O
    J Biol Chem; 2013 Jul; 288(27):19537-47. PubMed ID: 23671282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of MAPK cascades by protein tyrosine phosphatases.
    Torres J; Blanco-Aparicio C; Pulido R
    Methods Mol Biol; 2004; 250():103-12. PubMed ID: 14755083
    [No Abstract]   [Full Text] [Related]  

  • 25. Diverse physiological functions for dual-specificity MAP kinase phosphatases.
    Dickinson RJ; Keyse SM
    J Cell Sci; 2006 Nov; 119(Pt 22):4607-15. PubMed ID: 17093265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives.
    Stuible M; Zhao L; Aubry I; Schmidt-Arras D; Böhmer FD; Li CJ; Tremblay ML
    Chembiochem; 2007 Jan; 8(2):179-86. PubMed ID: 17191286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small molecule inhibitors of dual specificity protein phosphatases.
    Pestell KE; Ducruet AP; Wipf P; Lazo JS
    Oncogene; 2000 Dec; 19(56):6607-12. PubMed ID: 11426646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous assay of protein tyrosine phosphatases based on fluorescence resonance energy transfer.
    Nishikata M; Yoshimura Y; Deyama Y; Suzuki K
    Biochimie; 2006 Jul; 88(7):879-86. PubMed ID: 16540231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase.
    Zhu Y; Li H; Long C; Hu L; Xu H; Liu L; Chen S; Wang DC; Shao F
    Mol Cell; 2007 Dec; 28(5):899-913. PubMed ID: 18060821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specificity of the MAP kinase ERK2 for phosphorylation of tyrosine hydroxylase.
    Royo M; Daubner SC; Fitzpatrick PF
    Arch Biochem Biophys; 2004 Mar; 423(2):247-52. PubMed ID: 15001389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells.
    Yemets A; Sheremet Y; Vissenberg K; Van Orden J; Verbelen JP; Blume YB
    Cell Biol Int; 2008 Jun; 32(6):630-7. PubMed ID: 18343165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-specificity phosphatases as targets for antineoplastic agents.
    Lyon MA; Ducruet AP; Wipf P; Lazo JS
    Nat Rev Drug Discov; 2002 Dec; 1(12):961-76. PubMed ID: 12461518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of mitogen-activated protein (MAP) kinase pathway by pervanadate, a potent inhibitor of tyrosine phosphatases.
    Zhao Z; Tan Z; Diltz CD; You M; Fischer EH
    J Biol Chem; 1996 Sep; 271(36):22251-5. PubMed ID: 8703041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy.
    Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC
    J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A distinct interaction mode revealed by the crystal structure of the kinase p38α with the MAPK binding domain of the phosphatase MKP5.
    Zhang YY; Wu JW; Wang ZX
    Sci Signal; 2011 Dec; 4(204):ra88. PubMed ID: 22375048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of ERK1/2 activities using affinity reagents.
    Pulido R; Zúñiga A; Ullrich A
    Methods Mol Biol; 2004; 250():49-60. PubMed ID: 14755079
    [No Abstract]   [Full Text] [Related]  

  • 37. Functional assignment of MAPK phosphatase domains.
    Nordle AK; Rios P; Gaulton A; Pulido R; Attwood TK; Tabernero L
    Proteins; 2007 Oct; 69(1):19-31. PubMed ID: 17596826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional docking in the MAPK p38α.
    Goldsmith EJ
    Sci Signal; 2011 Dec; 4(204):pe47. PubMed ID: 22375047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray.
    Sun H; Tan LP; Gao L; Yao SQ
    Chem Commun (Camb); 2009 Feb; (6):677-9. PubMed ID: 19322419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3,4-Diaryl-isoxazoles and -imidazoles as potent dual inhibitors of p38alpha mitogen activated protein kinase and casein kinase 1delta.
    Peifer C; Abadleh M; Bischof J; Hauser D; Schattel V; Hirner H; Knippschild U; Laufer S
    J Med Chem; 2009 Dec; 52(23):7618-30. PubMed ID: 19591487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.