These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An improved method for the estimation of firing rate dynamics using an optimal digital filter. Cherif S; Cullen KE; Galiana HL J Neurosci Methods; 2008 Aug; 173(1):165-81. PubMed ID: 18577401 [TBL] [Abstract][Full Text] [Related]
3. Spatiotemporal spike encoding of a continuous external signal. Masuda N; Aihara K Neural Comput; 2002 Jul; 14(7):1599-628. PubMed ID: 12079548 [TBL] [Abstract][Full Text] [Related]
5. Multiscale spike train variability in primary electrosensory afferents. Nelson ME J Physiol Paris; 2002; 96(5-6):507-16. PubMed ID: 14692498 [TBL] [Abstract][Full Text] [Related]
6. Spike-timing precision underlies the coding efficiency of auditory receptor neurons. Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733 [TBL] [Abstract][Full Text] [Related]
7. Estimating receptive fields in the presence of spike-time jitter. Gollisch T Network; 2006 Jun; 17(2):103-29. PubMed ID: 16818393 [TBL] [Abstract][Full Text] [Related]
8. Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Jolivet R; Lewis TJ; Gerstner W J Neurophysiol; 2004 Aug; 92(2):959-76. PubMed ID: 15277599 [TBL] [Abstract][Full Text] [Related]
9. A simple model of long-term spike train regularization. Brandman R; Nelson ME Neural Comput; 2002 Jul; 14(7):1575-97. PubMed ID: 12079547 [TBL] [Abstract][Full Text] [Related]
10. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli. Schaette R; Gollisch T; Herz AV J Neurophysiol; 2005 Jun; 93(6):3270-81. PubMed ID: 15689392 [TBL] [Abstract][Full Text] [Related]
11. A continuous entropy rate estimator for spike trains using a K-means-based context tree. Lin TW; Reeke GN Neural Comput; 2010 Apr; 22(4):998-1024. PubMed ID: 19922298 [TBL] [Abstract][Full Text] [Related]
12. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process. Gutnisky DA; Josić K J Neurophysiol; 2010 May; 103(5):2912-30. PubMed ID: 20032244 [TBL] [Abstract][Full Text] [Related]
13. The string method of burst identification in neuronal spike trains. Turnbull L; Dian E; Gross G J Neurosci Methods; 2005 Jun; 145(1-2):23-35. PubMed ID: 15922023 [TBL] [Abstract][Full Text] [Related]
15. A simple indicator of nonstationarity of firing rate in spike trains. Gourévitch B; Eggermont JJ J Neurosci Methods; 2007 Jun; 163(1):181-7. PubMed ID: 17418899 [TBL] [Abstract][Full Text] [Related]
16. What causes a neuron to spike? Agüera y Arcas B; Fairhall AL Neural Comput; 2003 Aug; 15(8):1789-807. PubMed ID: 14511513 [TBL] [Abstract][Full Text] [Related]
17. EEG-like signals generated by a simple chaotic model based on the logistic equation. Perea G; Márquez-Gamiño S; Rodríguez S; Moreno G J Neural Eng; 2006 Sep; 3(3):245-9. PubMed ID: 16921208 [TBL] [Abstract][Full Text] [Related]
18. The time-rescaling theorem and its application to neural spike train data analysis. Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915 [TBL] [Abstract][Full Text] [Related]
19. Estimating the temporal interval entropy of neuronal discharge. Reeke GN; Coop AD Neural Comput; 2004 May; 16(5):941-70. PubMed ID: 15070505 [TBL] [Abstract][Full Text] [Related]
20. Correlation between neural spike trains increases with firing rate. de la Rocha J; Doiron B; Shea-Brown E; Josić K; Reyes A Nature; 2007 Aug; 448(7155):802-6. PubMed ID: 17700699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]