BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19584031)

  • 1. Cytological changes in Turkish durum and bread wheat genotypes in response to salt stress.
    Yumurtaci A; Aydin Y; Uncuoglu AA
    Acta Biol Hung; 2009 Jun; 60(2):221-32. PubMed ID: 19584031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A screening method to identify genetic variation in root growth response to a salinity gradient.
    Rahnama A; Munns R; Poustini K; Watt M
    J Exp Bot; 2011 Jan; 62(1):69-77. PubMed ID: 21118825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat.
    Wu H; Shabala L; Azzarello E; Huang Y; Pandolfi C; Su N; Wu Q; Cai S; Bazihizina N; Wang L; Zhou M; Mancuso S; Chen Z; Shabala S
    J Exp Bot; 2018 Jul; 69(16):3987-4001. PubMed ID: 29897491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms.
    Aycan M; Baslam M; Asiloglu R; Mitsui T; Yildiz M
    Plant Physiol Biochem; 2021 Sep; 166():314-327. PubMed ID: 34147724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced defence responses of contrasting bread wheat genotypes under differential salt stress imposition.
    Singh A; Bhushan B; Gaikwad K; Yadav OP; Kumar S; Rai RD
    Indian J Biochem Biophys; 2015 Feb; 52(1):75-85. PubMed ID: 26040114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum).
    Makhloufi E; Yousfi FE; Pirrello J; Bernadac A; Ghorbel A; Bouzayen M
    Plant Signal Behav; 2015; 10(10):e1065366. PubMed ID: 26338450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of physio-biochemical responses to cold stress in tetraploid and hexaploid wheat.
    Nejadsadeghi L; Maali-Amiri R; Zeinali H; Ramezanpour S; Sadeghzade B
    Cell Biochem Biophys; 2014 Sep; 70(1):399-408. PubMed ID: 24691928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance.
    Wu H; Shabala L; Zhou M; Shabala S
    Plant Cell Physiol; 2014 Oct; 55(10):1749-62. PubMed ID: 25104542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of proteins from grain of different bread and durum wheat genotypes.
    Zilić S; Barać M; Pešić M; Dodig D; Ignjatović-Micić D
    Int J Mol Sci; 2011; 12(9):5878-94. PubMed ID: 22016634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt tolerance of Triticum monococcum L., T. dicoccum (Schrank) Schubl., T. durum Desf. and T. aestivum L. seedlings.
    Prazak R
    J Appl Genet; 2001; 42(3):289-92. PubMed ID: 14564035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat.
    Carvalho P; Azam-Ali S; Foulkes MJ
    J Integr Plant Biol; 2014 May; 56(5):455-69. PubMed ID: 24112696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of salt reduction on quality and acceptability of durum wheat bread.
    Pasqualone A; Caponio F; Pagani MA; Summo C; Paradiso VM
    Food Chem; 2019 Aug; 289():575-581. PubMed ID: 30955651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of genetic diversity among Syrian durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers.
    Achtar S; Moualla MY; Kalhout A; Röder MS; MirAli N
    Genetika; 2010 Nov; 46(11):1500-6. PubMed ID: 21254727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions.
    James RA; Blake C; Byrt CS; Munns R
    J Exp Bot; 2011 May; 62(8):2939-47. PubMed ID: 21357768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Analysis of
    Yousfi FE; Makhloufi E; Marande W; Ghorbel AW; Bouzayen M; Bergès H
    Front Plant Sci; 2016; 7():2034. PubMed ID: 28197152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotyping of isogenic chlorophyll-less bread and durum wheat mutant lines in relation to photoprotection and photosynthetic capacity.
    Zivcak M; Brestic M; Botyanszka L; Chen YE; Allakhverdiev SI
    Photosynth Res; 2019 Mar; 139(1-3):239-251. PubMed ID: 30019176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of seed priming with iron and/or zinc in the nucleolar activity and protein content of bread wheat.
    Carvalho A; Reis S; Pavia I; Lima-Brito JE
    Protoplasma; 2019 May; 256(3):763-775. PubMed ID: 30554374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring natural colorant behavior of husk of durum (Triticum durum Desf.) and bread (Triticum aestivum L.) wheat species for sustainable cotton fabric dyeing.
    Khan AA; Adeel S; Azeem M; Iqbal N
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):51632-51641. PubMed ID: 33990917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of nitric oxide on root growth and its oxidative damage in wheat seedling under salt stress].
    Chen M; Shen WB; Ruan HH; Xu LL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):569-76. PubMed ID: 15627712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil.
    Köleli N; Eker S; Cakmak I
    Environ Pollut; 2004 Oct; 131(3):453-9. PubMed ID: 15261409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.