These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

919 related articles for article (PubMed ID: 19584318)

  • 1. Vascular extracellular matrix and arterial mechanics.
    Wagenseil JE; Mecham RP
    Physiol Rev; 2009 Jul; 89(3):957-89. PubMed ID: 19584318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice.
    Wagenseil JE; Ciliberto CH; Knutsen RH; Levy MA; Kovacs A; Mecham RP
    Circ Res; 2009 May; 104(10):1217-24. PubMed ID: 19372465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular matrix and the mechanics of large artery development.
    Cheng JK; Wagenseil JE
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1169-86. PubMed ID: 22584609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres.
    Faury G
    Pathol Biol (Paris); 2001 May; 49(4):310-25. PubMed ID: 11428167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extracellular matrix of blood vessels.
    Eble JA; Niland S
    Curr Pharm Des; 2009; 15(12):1385-400. PubMed ID: 19355976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The modulus of elasticity of lobster aorta microfibrils.
    McConnell CJ; Wright GM; DeMont ME
    Experientia; 1996 Sep; 52(9):918-21. PubMed ID: 8841521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic fibers and biomechanics of the aorta: Insights from mouse studies.
    Yanagisawa H; Wagenseil J
    Matrix Biol; 2020 Jan; 85-86():160-172. PubMed ID: 30880160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologic aspects of drug therapy and large artery elastic properties.
    Bank AJ
    Vasc Med; 1997; 2(1):44-50. PubMed ID: 9546948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular matrix components and integrins in the control of arterial smooth muscle cell structure and function.
    Hedin U
    J Atheroscler Thromb; 1994; 1 Suppl 1():S39-46. PubMed ID: 9222890
    [No Abstract]   [Full Text] [Related]  

  • 10. Freeze-thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells.
    Venkatasubramanian RT; Wolkers WF; Shenoi MM; Barocas VH; Lafontaine D; Soule CL; Iaizzo PA; Bischof JC
    Ann Biomed Eng; 2010 Mar; 38(3):694-706. PubMed ID: 20108044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular Determinants of Arterial Morphogenesis, Growth, and Homeostasis.
    Mecham RP; Ramirez F
    Curr Top Dev Biol; 2018; 130():193-216. PubMed ID: 29853177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation of mechanical properties and quantitative proteomics of VSMC along the arterial tree.
    Dinardo CL; Venturini G; Zhou EH; Watanabe IS; Campos LC; Dariolli R; da Motta-Leal-Filho JM; Carvalho VM; Cardozo KH; Krieger JE; Alencar AM; Pereira AC
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H505-16. PubMed ID: 24337458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extracellular matrix dynamically regulates smooth muscle cell responsiveness to PDGF.
    Raines EW; Koyama H; Carragher NO
    Ann N Y Acad Sci; 2000 May; 902():39-51; discussion 51-2. PubMed ID: 10865824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical design in arteries.
    Shadwick RE
    J Exp Biol; 1999 Dec; 202(Pt 23):3305-13. PubMed ID: 10562513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers.
    Hungerford JE; Owens GK; Argraves WS; Little CD
    Dev Biol; 1996 Sep; 178(2):375-92. PubMed ID: 8812136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic and collagenous networks in vascular diseases.
    Arteaga-Solis E; Gayraud B; Ramirez F
    Cell Struct Funct; 2000 Apr; 25(2):69-72. PubMed ID: 10885576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of remodeling pathways to enhance the mechanical properties of a tissue engineered blood vessel.
    Ogle BM; Mooradian DL
    J Biomech Eng; 2002 Dec; 124(6):724-33. PubMed ID: 12596641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endometrial vascular development in heavy menstrual bleeding: altered spatio-temporal expression of endothelial cell markers and extracellular matrix components.
    Biswas Shivhare S; Bulmer JN; Innes BA; Hapangama DK; Lash GE
    Hum Reprod; 2018 Mar; 33(3):399-410. PubMed ID: 29309596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.