These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 19584907)
1. Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Hensel G; Kastner C; Oleszczuk S; Riechen J; Kumlehn J Int J Plant Genomics; 2009; 2009():835608. PubMed ID: 19584907 [TBL] [Abstract][Full Text] [Related]
2. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Hiei Y; Ishida Y; Komari T Front Plant Sci; 2014; 5():628. PubMed ID: 25426132 [TBL] [Abstract][Full Text] [Related]
3. Plant Transformation Techniques: Agrobacterium- and Microparticle-Mediated Gene Transfer in Cereal Plants. Imani J; Kogel KH Methods Mol Biol; 2020; 2124():281-294. PubMed ID: 32277460 [TBL] [Abstract][Full Text] [Related]
4. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Singh RK; Prasad M Protoplasma; 2016 May; 253(3):691-707. PubMed ID: 26660352 [TBL] [Abstract][Full Text] [Related]
5. Artificial MicroRNA-Based Specific Gene Silencing of Grain Hardness Genes in Polyploid Cereals Appeared to Be Not Stable Over Transgenic Plant Generations. Gasparis S; Kała M; Przyborowski M; Orczyk W; Nadolska-Orczyk A Front Plant Sci; 2016; 7():2017. PubMed ID: 28119710 [TBL] [Abstract][Full Text] [Related]
6. Production of Conjoined Transgenic and Edited Barley and Wheat Plants for Zang Y; Gong Q; Xu Y; Liu H; Bai H; Li N; Du L; Ye X; Lan C; Wang K Front Genet; 2022; 13():873850. PubMed ID: 35601488 [TBL] [Abstract][Full Text] [Related]
7. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Shrawat AK; Good AG Methods Mol Biol; 2011; 710():355-72. PubMed ID: 21207280 [TBL] [Abstract][Full Text] [Related]
8. Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. O'Kennedy MM; Stark HC; Dube N Methods Mol Biol; 2011; 710():343-54. PubMed ID: 21207279 [TBL] [Abstract][Full Text] [Related]
13. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. Hill CB; Li C Front Plant Sci; 2016; 7():1906. PubMed ID: 28066466 [TBL] [Abstract][Full Text] [Related]
14. Genetic transformation of major cereal crops. Ji Q; Xu X; Wang K Int J Dev Biol; 2013; 57(6-8):495-508. PubMed ID: 24166432 [TBL] [Abstract][Full Text] [Related]
15. Triticale adaption and competence assessment result in the high lands of Ethiopia. Legesse W Commun Agric Appl Biol Sci; 2014; 79(4):54-61. PubMed ID: 26072574 [TBL] [Abstract][Full Text] [Related]
16. Transformation of rice mediated by Agrobacterium tumefaciens. Hiei Y; Komari T; Kubo T Plant Mol Biol; 1997 Sep; 35(1-2):205-18. PubMed ID: 9291974 [TBL] [Abstract][Full Text] [Related]
17. An efficient and reproducible Hayta S; Smedley MA; Demir SU; Blundell R; Hinchliffe A; Atkinson N; Harwood WA Plant Methods; 2019; 15():121. PubMed ID: 31673278 [TBL] [Abstract][Full Text] [Related]
18. Advances and remaining challenges in the transformation of barley and wheat. Harwood WA J Exp Bot; 2012 Mar; 63(5):1791-8. PubMed ID: 22140237 [TBL] [Abstract][Full Text] [Related]
19. Agrobacterium-Mediated Immature Embryo Transformation of Recalcitrant Maize Inbred Lines Using Morphogenic Genes. Masters A; Kang M; McCaw M; Zobrist JD; Gordon-Kamm W; Jones T; Wang K J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116304 [TBL] [Abstract][Full Text] [Related]