These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19585570)

  • 41. Ca2+ ion transport through channels formed by α-hemolysin analyzed using a microwell array on a Si substrate.
    Sumitomo K; McAllister A; Tamba Y; Kashimura Y; Tanaka A; Shinozaki Y; Torimitsu K
    Biosens Bioelectron; 2012 Jan; 31(1):445-50. PubMed ID: 22152991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss.
    Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J
    Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation.
    Breukers J; Horta S; Struyfs C; Spasic D; Feys HB; Geukens N; Thevissen K; Cammue BPA; Vanhoorelbeke K; Lammertyn J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2316-2326. PubMed ID: 33411502
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes.
    Nakazawa K; Yoshiura Y; Koga H; Sakai Y
    J Biosci Bioeng; 2013 Nov; 116(5):628-33. PubMed ID: 23735328
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.
    Yoshimitsu R; Hattori K; Sugiura S; Kondo Y; Yamada R; Tachikawa S; Satoh T; Kurisaki A; Ohnuma K; Asashima M; Kanamori T
    Biotechnol Bioeng; 2014 May; 111(5):937-47. PubMed ID: 24222619
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A deep and permeable nanofibrous oval-shaped microwell array for the stable formation of viable and functional spheroids.
    Kim D; Lee SJ; Youn J; Hong H; Eom S; Kim DS
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34030141
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly parallel introduction of nucleic acids into mammalian cells grown in microwell arrays.
    Jain T; McBride R; Head S; Saez E
    Lab Chip; 2009 Dec; 9(24):3557-66. PubMed ID: 20024036
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microscale bioprocess optimisation.
    Micheletti M; Lye GJ
    Curr Opin Biotechnol; 2006 Dec; 17(6):611-8. PubMed ID: 17084609
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A microwell array system for stem cell culture.
    Moeller HC; Mian MK; Shrivastava S; Chung BG; Khademhosseini A
    Biomaterials; 2008 Feb; 29(6):752-63. PubMed ID: 18001830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An extracellular matrix microarray for probing cellular differentiation.
    Flaim CJ; Chien S; Bhatia SN
    Nat Methods; 2005 Feb; 2(2):119-25. PubMed ID: 15782209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scalable cardiac differentiation of human pluripotent stem cells as microwell-generated, size controlled three-dimensional aggregates.
    Bauwens CL; Ungrin MD
    Methods Mol Biol; 2014; 1181():15-25. PubMed ID: 25070323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laser-guided assembly of heterotypic three-dimensional living cell microarrays.
    Akselrod GM; Timp W; Mirsaidov U; Zhao Q; Li C; Timp R; Timp K; Matsudaira P; Timp G
    Biophys J; 2006 Nov; 91(9):3465-73. PubMed ID: 16891375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples.
    Zhang K; Liang Q; Ai X; Hu P; Wang Y; Luo G
    Anal Chem; 2011 Oct; 83(20):8029-34. PubMed ID: 21853976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture.
    Giulitti S; Magrofuoco E; Prevedello L; Elvassore N
    Lab Chip; 2013 Nov; 13(22):4430-41. PubMed ID: 24064704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells.
    Wilson HK; Canfield SG; Hjortness MK; Palecek SP; Shusta EV
    Fluids Barriers CNS; 2015 May; 12():13. PubMed ID: 25994964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-density microwell chip for culture and analysis of stem cells.
    Lindström S; Eriksson M; Vazin T; Sandberg J; Lundeberg J; Frisén J; Andersson-Svahn H
    PLoS One; 2009 Sep; 4(9):e6997. PubMed ID: 19750008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation.
    Moraes C; Chen JH; Sun Y; Simmons CA
    Lab Chip; 2010 Jan; 10(2):227-34. PubMed ID: 20066251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogel-encapsulated 3D microwell array for neuronal differentiation.
    Bae JH; Lee JM; Chung BG
    Biomed Mater; 2016 Feb; 11(1):015019. PubMed ID: 26928882
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-Step Imprinting of Femtoliter Microwell Arrays Allows Digital Bioassays with Attomolar Limit of Detection.
    Decrop D; Pardon G; Brancato L; Kil D; Zandi Shafagh R; Kokalj T; Haraldsson T; Puers R; van der Wijngaart W; Lammertyn J
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10418-10426. PubMed ID: 28266828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.