BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 19586123)

  • 1. Self-assembly of actin monomers into long filaments: Brownian dynamics simulations.
    Guo K; Shillcock J; Lipowsky R
    J Chem Phys; 2009 Jul; 131(1):015102. PubMed ID: 19586123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treadmilling of actin filaments via Brownian dynamics simulations.
    Guo K; Shillcock J; Lipowsky R
    J Chem Phys; 2010 Oct; 133(15):155105. PubMed ID: 20969431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of reduction of actin polymerization forces by ATP hydrolysis.
    Carlsson AE
    Phys Biol; 2008 Jul; 5(3):036002. PubMed ID: 18626129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method.
    Shimada Y; Adachi T; Inoue Y; Hojo M
    Mol Cell Biomech; 2009 Sep; 6(3):161-73. PubMed ID: 19670826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerization of actin filaments coupled with adenosine triphosphate hydrolysis: Brownian dynamics and theoretical analysis.
    Guo K; Xiao W; Qiu D
    J Chem Phys; 2011 Sep; 135(10):105101. PubMed ID: 21932920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerization and structure of nucleotide-free actin filaments.
    De La Cruz EM; Mandinova A; Steinmetz MO; Stoffler D; Aebi U; Pollard TD
    J Mol Biol; 2000 Jan; 295(3):517-26. PubMed ID: 10623543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative simulation model linking major biochemical reactions of actin-polymerization to structural properties of actin filaments.
    Halavatyi AA; Nazarov PV; Medves S; van Troys M; Ampe C; Yatskou M; Friederich E
    Biophys Chem; 2009 Mar; 140(1-3):24-34. PubMed ID: 19101066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid molecular dynamics simulations of living filaments.
    Caby M; Hardas P; Ramachandran S; Ryckaert JP
    J Chem Phys; 2012 Mar; 136(11):114901. PubMed ID: 22443794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP hydrolysis stimulates large length fluctuations in single actin filaments.
    Stukalin EB; Kolomeisky AB
    Biophys J; 2006 Apr; 90(8):2673-85. PubMed ID: 16443647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments.
    Teubner A; Wegner A
    Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular automaton model of the actin cytoskeleton.
    Dufort PA; Lumsden CJ
    Cell Motil Cytoskeleton; 1993; 25(1):87-104. PubMed ID: 8390923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry.
    Sept D; Elcock AH; McCammon JA
    J Mol Biol; 1999 Dec; 294(5):1181-9. PubMed ID: 10600376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clamped-filament elongation model for actin-based motors.
    Dickinson RB; Purich DL
    Biophys J; 2002 Feb; 82(2):605-17. PubMed ID: 11806905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin.
    Gaertner A; Wegner A
    J Muscle Res Cell Motil; 1991 Feb; 12(1):27-36. PubMed ID: 2050808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of ATP in the dynamics of the actin filaments of the cytoskeleton.
    Becker EW
    Biol Chem; 2006 Apr; 387(4):401-6. PubMed ID: 16606338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models for the length distributions of actin filaments: II. Polymerization and fragmentation by gelsolin acting together.
    Ermentrout GB; Edelstein-Keshet L
    Bull Math Biol; 1998 May; 60(3):477-503. PubMed ID: 9608854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature and regulation of actin filament turnover in cells.
    Sheterline P; Handel SE; Molloy C; Hendry KA
    Acta Histochem Suppl; 1991; 41():303-9. PubMed ID: 1811266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic analysis of polymerization dynamics with individual actin filaments.
    Fujiwara I; Takahashi S; Tadakuma H; Funatsu T; Ishiwata S
    Nat Cell Biol; 2002 Sep; 4(9):666-73. PubMed ID: 12198494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference in polymerization and steady-state dynamics of free and gelsolin-capped filaments formed by alpha- and beta-isoactins.
    Khaitlina S; Hinssen H
    Arch Biochem Biophys; 2008 Sep; 477(2):279-84. PubMed ID: 18619940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.