These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19586211)

  • 1. Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning.
    Kennedy KM; Rodrigue KM; Head D; Gunning-Dixon F; Raz N
    Neuropsychology; 2009 Jul; 23(4):475-91. PubMed ID: 19586211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging does not affect brain patterns of repetition effects associated with perceptual priming of novel objects.
    Soldan A; Gazes Y; Hilton HJ; Stern Y
    J Cogn Neurosci; 2008 Oct; 20(10):1762-76. PubMed ID: 18370593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in brain activity during verbal recency memory.
    Rajah MN; McIntosh AR
    Brain Res; 2008 Mar; 1199():111-25. PubMed ID: 18282558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N; Schütze H; Düzel E
    Neuropsychologia; 2006; 44(10):1765-76. PubMed ID: 16701731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
    Langan J; Seidler RD
    Behav Brain Res; 2011 Nov; 225(1):160-8. PubMed ID: 21784106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Span, CRUNCH, and beyond: working memory capacity and the aging brain.
    Schneider-Garces NJ; Gordon BA; Brumback-Peltz CR; Shin E; Lee Y; Sutton BP; Maclin EL; Gratton G; Fabiani M
    J Cogn Neurosci; 2010 Apr; 22(4):655-69. PubMed ID: 19320550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the neural mechanisms of skill learning and repetition priming: evidence from mirror reading.
    Poldrack RA; Gabrieli JD
    Brain; 2001 Jan; 124(Pt 1):67-82. PubMed ID: 11133788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure to engage spatial working memory contributes to age-related declines in visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2011 Jan; 23(1):11-25. PubMed ID: 20146609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preserved neural correlates of priming in old age and dementia.
    Lustig C; Buckner RL
    Neuron; 2004 Jun; 42(5):865-75. PubMed ID: 15182724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient learning produces spontaneous neural repetition suppression in prefrontal cortex.
    León-Carrión J; Izzetoglu M; Izzetoglu K; Martín-Rodríguez JF; Damas-López J; Barroso y Martin JM; Domínguez-Morales MR
    Behav Brain Res; 2010 Apr; 208(2):502-8. PubMed ID: 20045712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient perceptual neglect: visual working memory load affects conscious object processing.
    Emrich SM; Burianová H; Ferber S
    J Cogn Neurosci; 2011 Oct; 23(10):2968-82. PubMed ID: 21452935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmented pictures revisited: long-term changes in repetition priming, relation to skill learning, and the role of cognitive resources.
    Kennedy KM; Rodrigue KM; Raz N
    Gerontology; 2007; 53(3):148-58. PubMed ID: 17179724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural repetition suppression reflects fulfilled perceptual expectations.
    Summerfield C; Trittschuh EH; Monti JM; Mesulam MM; Egner T
    Nat Neurosci; 2008 Sep; 11(9):1004-6. PubMed ID: 19160497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segregation of function in the lateral prefrontal cortex during visual object working memory.
    Yoon JH; Hoffman JN; D'Esposito M
    Brain Res; 2007 Dec; 1184():217-25. PubMed ID: 17980353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repetition priming influences distinct brain systems: evidence from task-evoked data and resting-state correlations.
    Wig GS; Buckner RL; Schacter DL
    J Neurophysiol; 2009 May; 101(5):2632-48. PubMed ID: 19225167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No gender differences in brain activation during the N-back task: an fMRI study in healthy individuals.
    Schmidt H; Jogia J; Fast K; Christodoulou T; Haldane M; Kumari V; Frangou S
    Hum Brain Mapp; 2009 Nov; 30(11):3609-15. PubMed ID: 19387979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct mechanisms in visual category learning.
    DeGutis J; D'Esposito M
    Cogn Affect Behav Neurosci; 2007 Sep; 7(3):251-9. PubMed ID: 17993211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific and nonspecific neural activity during selective processing of visual representations in working memory.
    Oh H; Leung HC
    J Cogn Neurosci; 2010 Feb; 22(2):292-306. PubMed ID: 19400681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study.
    Gunning-Dixon FM; Raz N
    Neuropsychologia; 2003; 41(14):1929-41. PubMed ID: 14572526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging.
    Raz N; Gunning-Dixon FM; Head D; Dupuis JH; Acker JD
    Neuropsychology; 1998 Jan; 12(1):95-114. PubMed ID: 9460738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.